Confocal Terahertz Imaging of Ancient Manuscripts

  • Mariano Flammini
  • Claudia Bonsi
  • Chiara Ciano
  • Valeria Giliberti
  • Emanuele Pontecorvo
  • Paola Italia
  • Eugenio DelRe
  • Michele Ortolani


Terahertz imaging has the potential to identify and decipher portions of ancient manuscripts, which may be unreadable at infrared and visible wavelengths. We use a scanning confocal terahertz microscope to scan a medieval parchment with music notes and pentagrams written with different inks. The microscope is based on a continuous-wave solid-state source at 0.3 THz, emitting in the free space with a horn antenna, and a high numerical-aperture ellipsoidal reflector. We present terahertz images with diffraction-limited lateral resolution of approximately 0.5 mm, where the different inks all give similar high contrast. Symbols written on the “verso” side of the parchment, barely glimpsed in the near-infrared photograph, leave a clear imprint in the terahertz images. Artifacts due to imperfect flatness of the parchment are also briefly discussed.


Confocal microscopy Schottky diode detector Terahertz Paper Ink Diffraction limit 



We acknowledge support from the Grant office of Sapienza University of Rome through project THESMA. We thank S. Nieddu, S. Cristelli, and G. Amico for their valuable help in the experiment.


  1. 1.
    Chabries, D. M., Booras, S. W. & Bearman, G. H. Imaging the past: recent applications of multispectral imaging technology to deciphering manuscripts. Antiquity 77, 359–372 (2003).CrossRefGoogle Scholar
  2. 2.
    Apostolos Antonacopoulos, Andy C. Downton “Special issue on the analysis of historical documents” International Journal of Document Analysis and Recognition 9, Issue 2, 75 (2007)Google Scholar
  3. 3.
    V. Mocella, E. Brun, C. Ferrero and D. Delattre, Revealing letters in rolled Herculaneum papyri by X-ray phase-contrast imaging, Nature Communications 6, 5895 (2015)CrossRefGoogle Scholar
  4. 4.
    J. B. Jackson, J. Bowen, G. Walker, J. Labaune, G. Mourou, M. Menu, and K. Fukunaga “A Survey of Terahertz Applications in Cultural Heritage Conservation Science” IEEE Trans. on Terahz. Sci. Technol., 1, 220–231 (2011)CrossRefGoogle Scholar
  5. 5.
    K. Fukunaga, Y. Ogawa, S. Hayashi and I. Hosako “Application of terahertz spectroscopy for character recognition in a medieval manuscript” IEICE Electronics Express 5, 223–228 (2008)CrossRefGoogle Scholar
  6. 6.
    I. Catapano, A. Affinito,L. Guerriero, B. Boisceglia and F. Soldovieri, “Majolica imaging with terahertz waves: preliminary results” Appl. Phys. A 122, 533 (2016)CrossRefGoogle Scholar
  7. 7.
    J. B. Jackson, M. Mourou, J. F. Whitaker, I. N. Duling III, S. L. Williamson, M. Menu, and G. A. Mourou, “Terahertz imaging for non-destructive evaluation of mural paintings,” Opt. Comm. 281, 527–532 (2008).CrossRefGoogle Scholar
  8. 8.
    M. Reid and R. Fedosejevs, “Terahertz birefringence and attenuation properties of wood and paper”, Applied Optics 45, 2770 (2006)CrossRefGoogle Scholar
  9. 9.
    E. Abraham, A. Younus, A. El Fatimy, J.C. Delagnes, E. Nguéma and P. Mounaix, “Broadband terahertz imaging of documents written with lead pencils”, Optics Communications 282, 3104–3107 (2009)CrossRefGoogle Scholar
  10. 10.
    T. Bardon, R. K. May, P. F. Taday and M. Strlic, “Systematic study of terahertz time-domain spectra of historically informed black inks” Analyst 138, 4859–4869 (2013)CrossRefGoogle Scholar
  11. 11.
    Momose, A., Takeda, T., Itai, Y. & Hirano, K. Phase-contrast X-ray computed tomography for observing biological soft tissues. Nat. Med 2, 473–475 (1996).CrossRefGoogle Scholar
  12. 12.
    Cloetens, P., Barrett, R., Baruchel, J., Guigay, J.-P. & Schlenker, M. “Phase objects in synchrotron radiation hard X-ray imaging” J. Phys. D Appl. Phys. 29, 133–146 (1999).CrossRefGoogle Scholar
  13. 13.
    N. Karpowicz, H. Zhong, C. Zhang, K.-I. Lin, J.-S. Hwang, J. Xu, and X.-C. Zhang, “Compact continuous-wave subterahertz system for inspection applications,” Appl. Phys. Lett. 86, 054105 (2005).CrossRefGoogle Scholar
  14. 14.
    M.A. Salhi, I. Pupeza, and M. Koch, “Confocal THz Laser Microscope” J Infrared Milli Terahz Waves 31, 358–366 (2010)Google Scholar
  15. 15.
    R. Casini, A. Di Gaspare, E. Giovine, A. Notargiacomo, M. Ortolani and V. Foglietti “Three-dimensional shaping of sub-micron GaAs Schottky junctions for zero-bias terahertz rectification” Appl. Phys. Lett. 99, 263505 (2011)CrossRefGoogle Scholar
  16. 16.
    A. Kazemipour, M. Hudlicka, R. Dickhoff, M. Salhi, T. Kleine-Ostmann and T. Schrader, “The Horn Antenna as Gaussian-Source in the mm-Wave Domain” J. Infra. Milli. Terahz. Waves 35, 720–731 (2014)CrossRefGoogle Scholar
  17. 17.
    U. Bergmann, P. L. Manning and R. A. Wogelius, “Chemical mapping of paleontological and archeological artifacts with synchrotron X-rays” Annu. Rev. Anal. Chem. 5, 361–389 (2012).CrossRefGoogle Scholar
  18. 18.
    J. Xu, K. W. Plaxco and J. Allen, “Probing the collective vibrational dynamics of a protein in liquid water by terahertz absorption spectroscopy” Protein Sci. 15, 1175–1181 (2006).CrossRefGoogle Scholar
  19. 19.
    M. Ortolani, J. S. Lee, U. Schade and H.-W. Hübers “Surface roughness effects on the terahertz reflectance of pure explosive materials” Appl. Phys. Lett. 93, 081906 (2008)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.Dipartimento di FisicaSapienza University of RomeRomeItaly
  2. 2.Dipartimento di Studi Greco-Latini, Italiani e Scenico-MusicaliSapienza University of RomeRomeItaly
  3. 3.Center for Life and Nano SciencesIstituto Italiano di TecnologiaRomeItaly

Personalised recommendations