Design of a Millimeter-Wave Concentrator for Beam Reception in High-Power Wireless Power Transfer

  • Masafumi Fukunari
  • Nat Wongsuryrat
  • Toshikazu Yamaguchi
  • Yusuke Nakamura
  • Kimiya Komurasaki
  • Hiroyuki Koizumi
Article

Abstract

This study examined the performance of a developed taper-tube concentrator for 94-GHz millimeter-wave beam reception during wireless power transfer. The received energy is converted into kinetic energy of a working gas in the tube to drive an engine or thruster. The concentrator, which is assumed to have mirror reflection of millimeter waves in it, is designed to be shorter than conventional tapered waveguides of millimeter waves. A dimensionless design law of a concentrator is proposed based on geometric optics theory. Because the applicability of geometric optics theory is unclear, the ratio of its bore diameter to its wavelength was set as small compared to those in other possible applications. Then, the discrepancy between the designed and measured power reception was examined. Results show that the maximum discrepancy was as low as 7 % for the bore-to-wavelength ratio of 20 at the narrow end of the concentrator.

Keywords

Beamed energy propulsion Millimeter-wave Microwave optics Microwave rocket Concentrator 

References

  1. 1.
    A. Kantrowitz, Astronautics and Aeronautics 10, 74 (1972)Google Scholar
  2. 2.
    K. Komurasaki, B. Wang, in Encyclopedia of Aerospace Engineering, edited by R. Blockley and W. Shyy, (John Wiley & Sons Ltd., Chichester, UK, 2010), pp. 1351–1360Google Scholar
  3. 3.
    L.N. Myrabo, “World Record Flights of beam-Riding Rocket Lightcraft: Demonstration of “Disruptive” Propulsion Technology”, at the 37th AIAA/ASME/SAE/ASEE Joint Propulsion Conference, Salt Lake City, 2001, AIAA Paper 2001-3798Google Scholar
  4. 4.
    H. Katsurayama, M. Ushio, K. Komurasaki, Y. Arakawa, “Analytical study of flight performance of an air breathing RP laser launcher”, at the 40th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit, Fort Lauderdale, 2004, AIAA Paper 2004-2565Google Scholar
  5. 5.
    J.P. Knecht, M.M. Micci, AIAA Journal 26, 188 (1988)CrossRefGoogle Scholar
  6. 6.
    T. Nakagawa, Y. Mihara, K. Komurasaki, K. Takahashi, K. Sakamoto, T. Imai, Journal of Spacecraft and Rockets 41, 151 (2004)CrossRefGoogle Scholar
  7. 7.
    Y. Oda, T. Shibata, K. Komurasaki, K. Takahashi, A. Kasugai, K. Sakamoto, J. Propulsion and Power 25, 118 (2009)CrossRefGoogle Scholar
  8. 8.
    Y. Oda, K. Komurasaki, K. Takahashi, A. Kasugai, K. Sakamoto, J. Applied Physics 100, 113307-1 (2006)CrossRefGoogle Scholar
  9. 9.
    Y. Oda, K. Kajiwara, K. Takahashi, A. Kasugai, K. Sakamoto, K. Komurasaki, Jpn. J. Appl. Phys. 48, 116001 (2009)CrossRefGoogle Scholar
  10. 10.
    Y. Oda, T. Yamaguchi, Y. Shiraishi, K. Komurasaki, K. Kajiwara, K. Takahashi, A. Kasugai, K. Sakamoto, J Infrared Milli Terahz Waves 32, 877 (2011)CrossRefGoogle Scholar
  11. 11.
    Y. Oda, K. Komurasaki, K. Takahashi, A. Kasugai, K. Sakamoto, “An Experimental Study of a Thrust Generation Model for Microwave Beamed Energy Propulsion,” at the 44th AIAA Aerospace Sciences Meeting and Exhibit, Reno, Nevada, 2006, AIAA 2006-765Google Scholar
  12. 12.
    M. Fukunari, A. Arnault, T. Yamaguchi, K. Komurasaki, Applied Optics 53, I16 (2014)CrossRefGoogle Scholar
  13. 13.
    W.C. Brown, Solar Energy 56, 3 (1996)CrossRefGoogle Scholar
  14. 14.
    J.O. McSpadden, J.C. Mankins, Microwave Magazine 3, 46 (2002)CrossRefGoogle Scholar
  15. 15.
    G.E. Maryniak, Solar Energy 56, 87 (1996)CrossRefGoogle Scholar
  16. 16.
    T.W. Yoo, K. Chang, IEEE Trans. Microw. Theory Tech. 40,1259 (1992)CrossRefGoogle Scholar
  17. 17.
    J.O. McSpadden, T. Yoo, K. Chang, IEEE Trans. Microw. Theory Tech. 40, 2359 (1992)CrossRefGoogle Scholar
  18. 18.
    H.-Kaeo Chiou, I.-Shan Chen, IEEE Trans. Microw. Theory Tech. 58, 3598 (2010)Google Scholar
  19. 19.
    H. Koizumi, T. Inoue, K. Komurasaki, Y. Arakawa, Trans. of Japanese Soc. for Aeronautical and Space Sci. 50, 70 (2207)Google Scholar
  20. 20.
    R. Edamura, A. Osamura, K. Hara, H. Horisawa, “A Laser-Electrostatic Hybrid Thruster,” at the International Electric Propulsion Conference, Kobe, Japan, 2015Google Scholar
  21. 21.
    C.D. Maxwell, L.N. Myrabo, “Feasibility of laser-driven repetitively pulsed MHD generators,” at the 18th Thermophysics Conference, Fluid Dynamics and Co-located ConferencesGoogle Scholar
  22. 22.
    L.N. Myrabo, R.J. Rosa, AIP Conference Proceedings 702, 544 (2004)CrossRefGoogle Scholar
  23. 23.
    K. Sakamoto, A. Kasugai, K. Takahashi, R. Minami, N. Kobayashi, K. Kajiwara, Nature Physics 3, 411 (2007)CrossRefGoogle Scholar
  24. 24.
    T. Rzesnicki, B. Piosczyk, S. Kern, S. Illy, J. Jin, A. Samartsev, A. Schlaich, M. Thumm, IEEE Trans. on Plasma Science 38, 1141 (2010)CrossRefGoogle Scholar
  25. 25.
    J.T. Kare, K.L. G. Parkin, AIP Conf. Proceedings 830, 388 (3006)Google Scholar
  26. 26.
    International Telecommunication Union Recommendations, ITU-R P.676-8, Attenuation by atmospheric gases, https://www.itu.int/dms_pubrec/itu-r/rec/p/R-REC-P.676-8-200910-S!!PDF-E.pdf
  27. 27.
    M. Fukunari, N. Wongsuryrat, T. Yamaguchi, K. Komurasaki, H. Koizumi, “Design of an Oversize Tapered-tube Beam Concentrator for Microwave Rocket,” at the 39th International Conference on Infrared, Millimeter, and Terahertz waves, Tucson, Arizona, 2014Google Scholar
  28. 28.
    N. Wongsuryrat, K. Asai, M. Fukunari, T. Yamaguchi, K. Komurasaki, “Design of Microwave Rocket Beamed Energy Propulsion Transmission Receiving System,” at the Space Transportation Symposium, Kanagawa, Japan, 2014Google Scholar
  29. 29.
    M. Fukunari, N. Wongsuryrat, T. Yamaguchi, K. Komurasaki, Y. Oda, R. Ikeda, K. Kajiwara, K. Takahashi, K. Sakamoto, “Demonstration of Sub-Megawatt Power Transmission to Microwave Rocket,” at the 39th International Conference on Infrared, Millimeter, and Terahertz waves, Tucson, Arizona, 2014Google Scholar
  30. 30.
    M. Fukunari, T. Yamaguchi, S. Saitoh, K. Asai, S. Kurita, K. Komurasaki, Y. Oda, K. Kajiwara, K. Takahashi, K. Sakamoto, “Thrust Performance and Plasma Generation of Microwave Rocket with Microwave Beam Space Transmission System,” at the IEEE Pulsed Power and Plasma Science Conference, San Francisco, 2013Google Scholar
  31. 31.
    N. Wongsuryrat, “Taper-Tube Concentrator of Millimeter-Wave Beam for Microwave Rocket,” Master thesis submitted to The University of Tokyo.Google Scholar
  32. 32.
    H.-Georg Unger, The Bell System Technical Journal 37, 899 (1958)Google Scholar
  33. 33.
    J.L. Doane, International Journal of Infrared and Millimeter Wave 5, 737 (1984)CrossRefGoogle Scholar
  34. 34.
    S.A. Schelkunoff, The Bell System Technical Journal 31, 784 (1952)MathSciNetCrossRefGoogle Scholar
  35. 35.
    C. García-Meca, M.M. Tung, J.V. Galán, R. Ortuño, F.J. Rodríguez-Fortuño, J. Martí, A. Martínez, Optics Express 19, 3562 (2011)CrossRefGoogle Scholar
  36. 36.
    M.K. Thumm, W. Kasparek, IEEE Transaction on Plasma Science 30, 755 (2002)CrossRefGoogle Scholar
  37. 37.
    M.A. Shapiro, R.J. Temkin, International Journal of Infrared and Millimeter Wave 32, 283 (2011)CrossRefGoogle Scholar
  38. 38.
    M. Takahashi, N. Ohnishi, Applied Physics Letters 105, 223504-1 (2014)CrossRefGoogle Scholar
  39. 39.
    E.N. Grossman, O.D. Friedman, A.O. Nelson, IEEE Trans. on Terahertz Science and Technology 4, 65 (2014)Google Scholar
  40. 40.
    J.A. Murphy, Int. J. IRMMW 8, 1165(1987)Google Scholar
  41. 41.
    H. Idei, T. Shimozuma, M.A. Shapiro, T. Notake, S. Kubo, R.J. Temkin, IEEE Transactions on Microwave Theory and Techniques 54, 3899 (2006)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.Research Center for Development of Far-infrared RegionUniversity of FukuiFukuiJapan
  2. 2.The University of TokyoKashiwaJapan
  3. 3.Edogawa UniversityNagareyamaJapan

Personalised recommendations