Advertisement

Application of Terahertz Field Enhancement Effect in Metal Microstructures

  • M. NakajimaEmail author
  • T. Kurihara
  • Y. Tadokoro
  • B. Kang
  • K. Takano
  • K. Yamaguchi
  • H. Watanabe
  • K. Oto
  • T. Suemoto
  • M. Hangyo
Article

Abstract

Applications of high-field terahertz pulses are attractive in physics and terahertz technology. In this study, two applications related to high-intensity terahertz pulses are demonstrated. The field enhancement effect by subwavelength metallic microstructures is utilized for terahertz excitation measurement. The spin precession dynamics in magnetic materials was induced by a terahertz magnetic field. Spin precession was amplified by one order of magnitude in amplitude by the enhanced magnetic terahertz field in orthoferrite ErFeO3 with metal microstructures. The induced spin dynamics was analyzed and explained by LLG-LCR model. Moreover, a detection method for terahertz pulses was developed using a cholesteric liquid crystal at room temperature without any electronic devices. The beam profile of terahertz pulses was visualized and compared to other methods such as the knife edge method using pyroelectric detector and micro-bolometer array. The liquid crystal terahertz imager is very simple and has good applicability as a portable terahertz-sensing card.

Keywords

Terahertz wave Metamaterial Field enhancement Imager Liquid crystal 

Notes

Acknowledgments

This work has been partially supported by a Grant-in-Aid for Scientific Research on Innovative Areas (No. 22109003) from the Ministry of Education, Culture, Sports, Science, and Technology Japan (MEXT) and a Grant-in-Aid for Scientific Research, KAKENHI, for Scientific Research (B), (Nos. JP25286063, JP26287060, JP16H03886), and for Challenging Exploratory Research (Nos. JP24656043, JP26600109) from Japan Society for the Promotion of Science.

References

  1. 1.
    K. Sakai, ed., Terahertz Optoelectronics, (Springer, 2005).Google Scholar
  2. 2.
    Kampfrath, K. Tanaka, K.A. Nelson, Nat. Photonics 7, 680 -690 (2013).CrossRefGoogle Scholar
  3. 3.
    H. Y. Hwang, S. Fleischer, N. C. Brandt, B. G. Perkins Jr., M. Liu, K. Fan, A. Sternbach, X. Zhang, R. D. Averitt & K. A. Nelson, J. Modern Optics 61, 1447-1479 (2014).MathSciNetGoogle Scholar
  4. 4.
    W. L. Chan, J. D. and D.M. Mittleman, Rep. Prog. Phys. 70 1325–1379 (2007).Google Scholar
  5. 5.
    P.U. Jepsen, D.G.Cooke, and M. Koch, Laser Photonics Rev. 5, 124–166 (2011).Google Scholar
  6. 6.
    C Jansen,S.Wietzke,O. Peters,M.Scheller,N. Vieweg,M. Salhi, N. Krumbholz, C. Jördens, T. Hochrein, and M. Koch,, Appl. Optics, 49, E48, (2010).Google Scholar
  7. 7.
    M. Hangyo, M. Tani, and T. Nagashima, Int. J. Infrared Millimeter Waves 26, 1661-1690 (2005).CrossRefGoogle Scholar
  8. 8.
    M. Liu et al., Nature 487, 345–348, (2012).CrossRefGoogle Scholar
  9. 9.
    K. Fan et al., Phys. Rev.Lett., 110, 217404-1-5, (2013).Google Scholar
  10. 10.
    C. Lange et. al., Phys. Rev. Lett. 113, 227401, (2014).Google Scholar
  11. 11.
    P. Gaal, W. Kuehn, K. Reimann, M. Woerner, T. Elsaesser, and R. Hey, Nature 450, 1210-1213 (2007).CrossRefGoogle Scholar
  12. 12.
    J. Hebling, K.L. Yeh, M.C. Hoffmann, B. Bartal, and K.A. Nelson,, J. Opt. Soc. Am. B 25, B6-B19 (2008).CrossRefGoogle Scholar
  13. 13.
    J. Hebling, K. Yeh, M.C. Hoffmann, and K.A.Nelson, IEEE J. Sel. Top. Quantum Electron. 14, 345 (2008).Google Scholar
  14. 14.
    F. Blanchard, G. Sharma, L. Razzari, X. Ropagnol, H-C. Bandulet, F. Vidal, R. Morandotti, J-C Kieffer, T. Ozaki, H. Tiedje, H. Haugen, M. Reid, and F. Hegmann, IEEE J. Sel. Top. Quantum Electron. 17, 5-16 (2011).Google Scholar
  15. 15.
    H. Hirori, A. Doi, F. Blanchard, and K. Tanaka, Appl. Phys. Lett. 98, 091106 (2011).CrossRefGoogle Scholar
  16. 16.
    A. Sell, A. Leitenstorfer, and R. Huber, Opt. Lett. 33, 2767–2769 (2008).CrossRefGoogle Scholar
  17. 17.
    T. Bartel, P. Gaal, K. Reimann, M. Woerner, and T. Elsaesser, Opt. Lett.30,2805-2807 (2005).CrossRefGoogle Scholar
  18. 18.
    Y. Minami, M. Nakajima, and T. Suemoto, Phys. Rev. A 83, 023828 (2011).CrossRefGoogle Scholar
  19. 19.
    Y.Minami, T. Kurihara, K. Yamaguchi, M. Nakajima, and T. Suemoto, Appl. Phys. Lett. 102, 041105 (2013).Google Scholar
  20. 20.
    Y.Minami, T. Kurihara, K. Yamaguchi, M. Nakajima, and T. Suemoto, Appl. Phys. Lett. 102, 151106 (2013).Google Scholar
  21. 21.
    T. I. Oh, Y. J. Yoo, Y. S. You and K. Y. Kim, Appl. Phys. Lett. 105, 041103 (2014).CrossRefGoogle Scholar
  22. 22.
    A. Schneider, A. Shuvaev, S. Engelbrecht, S. O. Demokritov, and A. Pimenov, Phys. Rev. Lett. 103, 103907, (2009).CrossRefGoogle Scholar
  23. 23.
    Y. Mukai, H. Hirori, T. Yamamoto, H. Kageyama and K. Tanaka, Appl. Phys. Lett. 105, 022410 (2014).CrossRefGoogle Scholar
  24. 24.
    T. Kurihara, K. Nakamura, K. Yamaguchi, Y. Sekine, Y. Saito, M. Nakajima, K. Oto, H. Watanabe, and T. Suemoto, Phys. Rev. B 90, 144408 (2014).CrossRefGoogle Scholar
  25. 25.
  26. 26.
  27. 27.
    Y. Tadokoro, T. Nishikawa, B. Kang, K. Takano, M. Hangyo, and M. Nakajima, Opt. Lett. 40, 4456 (2015).CrossRefGoogle Scholar
  28. 28.
    M. Nakajima, A. Namai, S. Ohkoshi, and T. Suemoto, Opt. Express., 18, 18260, (2010).CrossRefGoogle Scholar
  29. 29.
    K. Yamaguchi, M. Nakajima, and T. Suemoto, Phys. Rev. Lett. 105, 237201 (2010).CrossRefGoogle Scholar
  30. 30.
    T. Kampfrath, A. Sell, G. Klatt, A. Pashkin, S. Ma ̈hrlein, T. Dekorsy, M. Wolf, M.Fiebig, A. Leitenstorfer, and R. Huber, Nat. Photonics 5, 31, (2011).Google Scholar
  31. 31.
    K. Yamaguchi, T. Kurihara, Y. Minami, M. Nakajima, and T. Suemoto, Phys. Rev.Lett. 110, 137204, (2013).Google Scholar
  32. 32.
    K. Yamaguchi, T. Kurihara, H. Watanabe, M. Nakajima, and T. Suemoto, Phys. Rev. B 92, 064404 (2015).CrossRefGoogle Scholar
  33. 33.
    G. Chilaya, H-S. Kitzerow and C. Bahr, eds. (Springer, New York, 2001), pp. 159-185.Google Scholar
  34. 34.
    S. M. Shapiro, J. D. Axe, and J. P. Remeika, Phys. Rev. B 10,2014 (1974).CrossRefGoogle Scholar
  35. 35.
    R. L. White, J. Appl. Phys. 40, 1061 (1969).CrossRefGoogle Scholar
  36. 36.
    G. F. Herrmann, J. Phys. Chem. Solids 24, 597 (1963).CrossRefGoogle Scholar
  37. 37.
    G. V. Kozlov, S. P. Lebedev, A. A. Mukhin, A. S. Prokhorov,I. V. Fedorov, A.M. Balbashov, and I. Y. Parsegov, IEEE Trans.Magn. 29, 3443 (1993).Google Scholar
  38. 38.
    M. A. Ordal, R. J. Bell, R. W. Alexander, Jr., L. L. Long, and M. R. Querry, Appl. Opt. 24, 4493 (1985).CrossRefGoogle Scholar
  39. 39.
    T. Kuriahra, the University of Tokyo, thesis (2016).Google Scholar
  40. 40.
    N. Oda, A. W. M. Lee, T. Ishi, I. Hosako, and Q. Hu, Proc. SPIE 8363, 83630A (2012).CrossRefGoogle Scholar
  41. 41.
    F. Keilmann and K. F. Renk, Appl. Phys. Lett. 18, 452-454 (1971).CrossRefGoogle Scholar
  42. 42.
    J. Stasiek, A. Stasiek, M. Jewartowski, and M. W. Collins, Opt. Laser Technol. 38, 243-256 (2006).CrossRefGoogle Scholar
  43. 43.
    J. L. Hay and D. K. Hollingsworth, Exp. Therm. Fluid Sci. 12, 1-12 (1996).CrossRefGoogle Scholar
  44. 44.
    J. W. Baughn, M. R. Anderson, J. E. Mayhew, and J. D. Wolf, J. Heat Transfer 121, 1067-1072 (1999).CrossRefGoogle Scholar
  45. 45.
    J. M. Khosrofian, and B. A. Garetz, Appl. Opt. 22, 3406-3410 (1983).CrossRefGoogle Scholar
  46. 46.
  47. 47.
    N. I. Landy, C. M. Bingham, T. Tyler, N. Jokerst, D. R. Smith, and W. J. Padilla, Phys. Rev. B 79, 1-6 (2009).CrossRefGoogle Scholar
  48. 48.
    S. A. Kuznetsov, A. G. Paulish, A. V. Gelfand, P. A. Lazorskiy, and V. N. Fedorinin, Appl. Phys. Lett. 99, 30-32 (2011).CrossRefGoogle Scholar
  49. 49.
    K. Boyoung, Y. Tadokoro, T. Nishikawa, K. Takano, G. Isoyama, M. Hangyo, and M. Nakajima, The Second International Symposium on Frontiers in THz Technology (FTT2015) (Hamamatsu, Japan), Abstract Pos2.34.Google Scholar
  50. 50.
    R. Yahiaoui, K. Hanai, K. Takano, T. Nishida, F. Miyamaru, M. Nakajima, and M. Hangyo, Opt. Lett. 40, 3197 (2015)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • M. Nakajima
    • 1
    Email author
  • T. Kurihara
    • 1
  • Y. Tadokoro
    • 1
  • B. Kang
    • 1
  • K. Takano
    • 1
  • K. Yamaguchi
    • 2
  • H. Watanabe
    • 2
  • K. Oto
    • 3
  • T. Suemoto
    • 2
  • M. Hangyo
    • 1
  1. 1.Institute of Laser EngineeringOsaka UniversityOsakaJapan
  2. 2.Institute for Solid State PhysicsThe University of TokyoKashiwaJapan
  3. 3.Department of PhysicsChiba UniversityChibaJapan

Personalised recommendations