Non-invasive Florentine Renaissance Panel Painting Replica Structures Investigation by Using Terahertz Time-Domain Imaging (THz-TDI) Technique

  • Corinna L. Koch Dandolo
  • Marcello Picollo
  • Costanza Cucci
  • Peter Uhd Jepsen
Article

Abstract

The potentials of the Terahertz Time-Domain Imaging (THz-TDI) technique for a non-invasive inspection of panel paintings have been considered in detail. The THz-TD data acquired on a replica of a panel painting made in imitation of Italian Renaissance panel paintings were processed in order to provide insights as to the limits and potentials of the technique in detecting different kinds of underdrawings and paint layers. Constituent layers, construction techniques, and anomalies were identified and localized by interpreting the extracted THz dielectric stratigraphy.

Keywords

Terahertz time-domain spectroscopy Imaging Panel paintings Renaissance paintings 

References

  1. 1.
    M. Alfeld and J. A. C. Broekaert, “Mobile depth profiling and sub-surface imaging techniques for historical paintings - A review,” Spectrochim. Acta - Part B At. Spectrosc., vol. 88, pp. 211–230, 2013.Google Scholar
  2. 2.
    D. Gavrilov and D. P. Almond, “A review of imaging methods in analysis of works of art: thermographic imaging method in art analysis,” Can. J. Phys. - NRC Res. Press, vol. 92, pp. 341–364, 2014.Google Scholar
  3. 3.
    A. M. Siddiolo, L. D’Acquisto, A. R. Maeva, and R. G. Maev, “Wooden panel paintings investigation: an air-coupled ultrasonic imaging approach,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control, vol. 54, no. 4, pp. 836–846, 2007.CrossRefGoogle Scholar
  4. 4.
    A. M. Siddiolo, A. Maeva, and R. G. Maev, “Air-Coupled Imaging Method Applied To the Study and Conservation of Paintings,” in Acoustical imaging, Spinger., 2007, pp. 3–12.Google Scholar
  5. 5.
    A. Bendada, S. Sfarra, C. I. Castanedo, M. Akhloufi, and J. P. Caumes, “Subsurface imaging for panel paintings inspection : A comparative study of the ultraviolet, the visible, the infrared and the terahertz spectra,” Opto-electronics Rev., vol. 23, no. 1, pp. 88–99, 2015.Google Scholar
  6. 6.
    K. Fukunaga and M. Picollo, “Characterization of works of art,” in Terahertz Spectroscopy and Imaging, pp. 521–538, 2012.Google Scholar
  7. 7.
    D. Mittleman, Sensing with terahertz radiation, Springer-V., vol. 85. Berlin, Heidelberg: Springer Berlin Heidelberg, 2003.Google Scholar
  8. 8.
    W. L. Chan, J. Deibel, and D. M. Mittleman, “Imaging with terahertz radiation,” Reports Prog. Phys., vol. 70, no. 8, pp. 1325–1379, Aug. 2007.Google Scholar
  9. 9.
    B. B. Hu and M. C. Nuss, “Imaging with terahertz waves.,” Opt. Lett., vol. 20, no. 16, p. 1716, 1995.Google Scholar
  10. 10.
    W. Köhler, M. Panzer, U. Klotzach, and S. Winner, “Non-destructive investigation of paintings with THz-radiation,” in 9th ECNDT, Berlin, …, 2006, pp. 1–7.Google Scholar
  11. 11.
    A. S. Skryl, J. B. Jackson, M. I. Bakunov, M. Menu, and G. A. Mourou, “Terahertz time-domain imaging of hidden defects in wooden artworks: application to a Russian icon painting,” Appl. Opt., vol. 53, no. 6, p. 1033, 2014.Google Scholar
  12. 12.
    C. L. Koch Dandolo, T. Filtenborg, J. Skou-Hansen, and P. U. Jepsen, “Analysis of a seventeenth-century panel painting by reflection terahertz time-domain imaging (THz-TDI): contribution of ultrafast optics to museum collections inspection,” Appl. Phys. A, vol. 121, no. 3, pp. 981–986, 2015.CrossRefGoogle Scholar
  13. 13.
    R. M. Groves, B. Pradarutti, E. Kouloumpi, W. Osten, and G. Notni, “2D and 3D non-destructive evaluation of a wooden panel painting using shearography and terahertz imaging,” NDT E Int., vol. 42, no. 6, pp. 543–549, 2009.CrossRefGoogle Scholar
  14. 14.
    C. L. K. Dandolo and P. U. Jepsen, “THz reflectometric imaging of contemporary panel artwork,” in 2013 38th International Conference on Infrared, Millimeter, and Terahertz Waves (IRMMW-THz), 2013, pp. 1–2.Google Scholar
  15. 15.
    C. L. Koch Dandolo, A. Cosentino, and P. U. Jepsen, “Inspection of panel paintings beneath gilded finishes using terahertz time-domain imaging,” Stud. Conserv., vol. 60, no. supplement 1, 2015.Google Scholar
  16. 16.
    J. D. Buron, D. H. Petersen, P. Bøggild, D. G. Cooke, M. Hilke, J. Sun, E. Whiteway, P. F. Nielsen, O. Hansen, A. Yurgens, and P. U. Jepsen, “Graphene conductance uniformity mapping.,” Nano Lett., vol. 12, no. 10, pp. 5074–81, Oct. 2012.Google Scholar
  17. 17.
    L. Uzielli, Z. Véliz, J. Wadum, and P. Walker, “History of panel-making techniques,” in The structural conservation of panel paintings - Proceedings of a symposium at the J. Paul Getty Museum, April 1995, 1998, vol. Part two, pp. 109–185.Google Scholar
  18. 18.
    A. Moutsatsou and A. Alexopoulou, “A note on the construction of test panels for the spectral imaging of paintings,” Stud. Conserv., vol. 59, no. 1, pp. 3–9, 2014.CrossRefGoogle Scholar
  19. 19.
    M. Picollo, K. Fukunaga, and J. Labaune, “Obtaining noninvasive stratigraphic details of panel paintings using terahertz time domain spectroscopy imaging system,” J. Cult. Herit., vol. 16, no. 1, pp. 73–80, Jan. 2015.Google Scholar
  20. 20.
    S. M. Pizer, E. P. Amburn, J. D. Austin, R. Cromartie, A. Geselowitz, T. Greer, B. T. H. Romeny, J. B. Zimmerman, and K. Zuiderveld, “Adaptive histogram equalization and its variations,” Comput. Vision, Graph. Image Process., vol. 39, no. 3, pp. 355–368, Sep. 1987.Google Scholar
  21. 21.
    A. M. Reza, “Realization of the Contrast Limited Adaptive Histogram Equalization (CLAHE) for Real-Time Image Enhancement,” J. VLSI Signal Process. Signal, Image, Video Technol., vol. 38, no. 1, pp. 35–44, Aug. 2004.Google Scholar
  22. 22.
    E. Abraham, A. Younus, A. El Fatimy, J. C. C. Delagnes, E. Nguéma, and P. Mounaix, “Broadband terahertz imaging of documents written with lead pencils,” Opt. Commun., vol. 282, no. 15, pp. 3104–3107, Aug. 2009.Google Scholar
  23. 23.
    M. B. Johnston and J. Lloyd-Hughes, “Pump-Probe Spectroscopy at Terahertz Frequencies,” in Terahertz Spectroscopy and Imaging, vol. 171, K.-E. Peiponen, A. Zeitler, and M. Kuwata-Gonokami, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013.Google Scholar
  24. 24.
    T. Bardon, R. K. May, P. F. Taday, and M. Strlič, “Systematic study of terahertz time-domain spectra of historically informed black inks.,” Analyst, pp. 4859–4869, 2013.Google Scholar
  25. 25.
    A. J. Fitzgerald, E. Berry, N. N. Zinovev, G. C. Walker, M. A. Smith, and J. M. Chamberlain, “An introduction to medical imaging with coherent terahertz frequency radiation.,” Phys. Med. Biol., vol. 47, no. 7, pp. R67–R84, Apr. 2002.Google Scholar
  26. 26.
    G. Sundberg, L. M. Zurk, S. Schecklman, and S. Henry, “Modeling rough-surface and granular scattering at terahertz frequencies using the finite-difference time-domain method,” IEEE Trans. Geosci. Remote Sens., vol. 48, no. 10, pp. 3709–3719, 2010.CrossRefGoogle Scholar
  27. 27.
    T. Hong, K. Choi, T. Ha, B. C. Park, K. I. Sim, J. H. Kim, J. H. Kim, J. E. Kwon, S. Lee, D. I. Kang, and H. H. Lee, “Terahertz time-domain and Fourier-transform infrared spectroscopy of traditional Korean pigments,” J. Korean Phys. Soc., vol. 64, no. 5, pp. 727–731, Mar. 2014.Google Scholar
  28. 28.
    K. Fukunaga, I. Hosako, Y. Kohdzuma, T. Koezuka, M. J. Kim, T. Ikari, and X. Du, “Terahertz analysis of an East Asian historical mural painting,” J. Eur. Opt. Soc., vol. 5, pp. 10024-1–100244, 2010.Google Scholar
  29. 29.
    K. Fukunaga and M. Picollo, “Terahertz spectroscopy applied to the analysis of artists’ materials,” Appl. Phys. A, vol. 100, no. 3, pp. 591–597, 2010.CrossRefGoogle Scholar
  30. 30.
    C. L. Koch-Dandolo, T. Filtenborg, K. Fukunaga, J. Skou-Hansen, and P. U. Jepsen, “Reflection terahertz time-domain imaging for analysis of an 18th century neoclassical easel painting,” Appl. Opt., vol. 54, no. 16, p. 5123, 2015.Google Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Corinna L. Koch Dandolo
    • 1
    • 3
  • Marcello Picollo
    • 2
  • Costanza Cucci
    • 2
  • Peter Uhd Jepsen
    • 1
  1. 1.DTU Fotonik—Department of Photonics EngineeringTechnical University of DenmarkKongens LyngbyDenmark
  2. 2.IFAC-CNRSesto FiorentinoItaly
  3. 3.CIO Centro de Investigaciones en Óptica A.C.LeónMexico

Personalised recommendations