Advertisement

Optimization of the Tilted-Pulse-Front Terahertz Excitation Setup Containing Telescope

  • Levente Tokodi
  • J. Hebling
  • L. Pálfalvi
Article

Abstract

Optimization of the telescopic tilted-pulse-front terahertz excitation setup with respect to the imaging errors is given. A guideline is presented in the form of simple analytical formulae describing the optimal geometrical configuration of the telescopic setup. Pump pulse distortions and terahertz wave-front distortions are analyzed by ray tracing calculations supposing near-infrared pump pulses with 200 fs transform limited pulse length. The detrimental effects of imaging errors in a tilted-pulse-front terahertz source can be significantly reduced by using telescopic imaging instead of one-lens. It is also shown, that in the case of the one-lens setup significant, and in the case of the telescopic setup, less significant reduction of the imaging errors can be achieved by using achromat lens(es) instead of singlet one(s). Calculation results show that the telescopic setup consisting of two achromat lenses is the most promising choice among the practically relevant schemes.

Keywords

Terahertz THz sources Tilted-pulse-front 

Notes

Acknowledgments

Financial support from Hungarian Scientific Research Fund (OTKA) grant number 113083 is acknowledged. The present scientific contribution is dedicated to the 650th anniversary of the foundation of the University of Pécs, Hungary

References

  1. 1.
    J. Hebling, G. Almási, I. Z. Kozma, and J. Kuhl, “Velocity matching by pulse front tilting for large-area THz-pulse generation,” Opt. Express 10, 1161–1166 (2002).CrossRefGoogle Scholar
  2. 2.
    J. A. Fülöp, Z. Ollmann, C. Lombosi, C. Skrobol, S. Klingebiel, L. Pálfalvi, F. Krausz, S. Karsch, and J. Hebling, “Efficient generation of THz pulses with 0.4 mJ energy,” Opt. Express 22, 20155–20163 (2014).CrossRefGoogle Scholar
  3. 3.
    J. A. Fülöp, L. Pálfalvi, G. Almási, and J. Hebling, “Design of high-energy terahertz sources based on optical rectification,” Opt. Express 18, 12311–12327 (2010).CrossRefGoogle Scholar
  4. 4.
    S. B. Bodrov, A. A. Murzanev, Y. A. Sergeev, Y. A. Malkov, and A. N. Stepanov, “Terahertz generation by tilted-front laser pulses in weakly and strongly nonlinear regimes,” Applied Physics Letters 103, 251103 (2013).CrossRefGoogle Scholar
  5. 5.
    S.-C. Zhong, Z.-H. Zhai, J. Li, L.-G. Zhu, J. Li, K. Meng, Q. Liu, L.-H. Du, J.-H. Zhao, and Z.-R. Li, “Optimization of terahertz generation from LiNbO3 under intense laser excitation with the effect of three-photon absorption,” Opt. Express 23, 31313–31323 (2015).CrossRefGoogle Scholar
  6. 6.
    X. Wu, S. Carbajo, K. Ravi, F. Ahr, G. Cirmi, Y. Zhou, O. D. Mücke, and F. X. Kärtner, “Terahertz generation in lithium niobate driven by Ti:sapphire laser pulses and its limitations,” Opt. Lett. 39, 5403–5406 (2014).CrossRefGoogle Scholar
  7. 7.
    K. Ravi, W. R. Huang, S. Carbajo, E. A. Nanni, D. N. Schimpf, E. P. Ippen, and F. X. Kärtner, “Theory of terahertz generation by optical rectification using tilted-pulse-fronts,” Opt. Express 23, 5253–5276 (2015).CrossRefGoogle Scholar
  8. 8.
    K. Ravi, W. R. Huang, S. Carbajo, X. J. Wu, and F. Kartner, “Limitations to THz generation by optical rectification using tilted pulse fronts,” Opt. Express 22, 20239–20251 (2014).CrossRefGoogle Scholar
  9. 9.
    I. Z. Kozma, G. Almási, and J. Hebling, “Geometrical optical modeling of femtosecond setups having angular dispersion,” Applied Physics B 76, 257–261 (2003).CrossRefGoogle Scholar
  10. 10.
    L. Pálfalvi, J. A. Fülöp, G. Almási, and J. Hebling, “Novel setups for extremely high power single-cycle terahertz pulse generation by optical rectification,” Applied Physics Letters 92, 171107 (2008).CrossRefGoogle Scholar
  11. 11.
    M. Kunitski, M. Richter, M. D. Thomson, A. Vredenborg, J. Wu, T. Jahnke, M. Schöffler, H. Schmidt-Böcking, H. G. Roskos, and R. Dörner, “Optimization of single-cycle terahertz generation in LiNbO3 for sub-50 femtosecond pump pulses,” Opt. Express 21, 6826–6836 (2013).CrossRefGoogle Scholar
  12. 12.
    H. Hirori, A. Doi, F. Blanchard, and K. Tanaka, “Single-cycle terahertz pulses with amplitudes exceeding 1 MV/cm generated by optical rectification in LiNbO3,” Applied Physics Letters 98, 091106 (2011).CrossRefGoogle Scholar
  13. 13.
    H. Hirori, A. Doi, F. Blanchard, and K. Tanaka, “Erratum: “Single-cycle terahertz pulses with amplitudes exceeding 1 MV/cm generated by optical rectification in LiNbO3” [Appl. Phys. Lett. 98, 091106 (2011)],” Applied Physics Letters 103, 259901 (2013).CrossRefGoogle Scholar
  14. 14.
    H. Hirori, and K. Tanaka, “Nonlinear Optical Phenomena Induced by Intense Single-Cycle Terahertz Pulses,” IEEE Journal of Selected Topics in Quantum Electronics 19, 8401110–8401110 (2013).CrossRefGoogle Scholar
  15. 15.
    C. Lombosi, G. Polónyi, M. Mechler, Z. Ollmann, J. Hebling, and J. A. Fülöp, “Nonlinear distortion of intense THz beams,” New Journal of Physics 17, 083041 (2015).CrossRefGoogle Scholar
  16. 16.
    S.-C. Zhong, J. Li, Z.-H. Zhai, L.-G. Zhu, J. Li, P.-W. Zhou, J.-H. Zhao, and Z.-R. Li, “Generation of 0.19-mJ THz pulses in LiNbO3 driven by 800-nm femtosecond laser,” Opt. Express 24, 14828–14835 (2016).CrossRefGoogle Scholar
  17. 17.
    J. Hebling, “Derivation of the pulse front tilt caused by angular dispersion,” Optical and Quantum Electronics 28, 1759–1763 (1996).CrossRefGoogle Scholar
  18. 18.
    J. A. Fülöp, L. Pálfalvi, G. Almási, and J. Hebling, “Design of high-energy terahertz sources based on optical rectification: erratum,” Opt. Express 19, 22950–22950 (2011).CrossRefGoogle Scholar
  19. 19.
    T. Clausnitzer, T. Kämpfe, E. B. Kley, A. Tünnermann, A. V. Tishchenko, and O. Parriaux, “Highly-dispersive dielectric transmission gratings with 100% diffraction efficiency,” Opt. Express 16, 5577–5584 (2008).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.Institute of PhysicsUniversity of PécsPécsHungary
  2. 2.High-Field Terahertz Research GroupPécsHungary
  3. 3.Szentágothai Research CentreUniversity of PécsPécsHungary

Personalised recommendations