Bandwidth Study of the Microwave Reflectors with Rectangular Corrugations

  • Liang Zhang
  • Wenlong He
  • Craig R. Donaldson
  • Adrian W. Cross


The mode-selective microwave reflector with periodic rectangular corrugations in the inner surface of a circular metallic waveguide is studied in this paper. The relations between the bandwidth and reflection coefficient for different numbers of corrugation sections were studied through a global optimization method. Two types of reflectors were investigated. One does not consider the phase response and the other does. Both types of broadband reflectors operating at W-band were machined and measured to verify the numerical simulations.


Periodic waveguide Broadband reflector Mode matching method 



This work was supported by the Engineering and Physical Sciences Research Council (EPSRC) U.K. under Research Grant EP/K029746/1.


  1. 1.
    L. Schachter, Beam-wave interaction in periodic and quasi-periodic structures, 2nd ed., Springer, Berlin, 2011.Google Scholar
  2. 2.
    A.S. Gilmour, Principles of traveling wave tubes (Artech House, Boston, 1994).Google Scholar
  3. 3.
    W. He, L. Zhang, D. Bowes, H. Yin, K. Ronald, A.D.R. Phelps, and A.W. Cross, Appl. Phys. Lett. 107 (2015), no. 13, 133501.Google Scholar
  4. 4.
    R.E. Collin, Field theory of guided waves, in series of electromagnetic waves, 2nd ed., IEEE Press, New York, 1991.Google Scholar
  5. 5.
    B.Z. Katsenelenbaum, L.M.D. Ro, M. Pereyaslavets, M.S. Ayza, and M.K.A. Thumm, Theory of Non-uniform Waveguides: The Cross-Section Method (The IET, London U.K., 1999).Google Scholar
  6. 6.
    L. Zhang, W. He, K. Ronald, A. Phelps, C. Whyte, C. Robertson, A. Young, C. Donaldson, and A. Cross, IEEE Trans. Microw. Theory Techn. 60 (2012), no. 1, 1.Google Scholar
  7. 7.
    P.J.B. Clarricoats and A.D. Olver, Corrugated horns for microwave antennas (London U.K.: Peregrinus, 1984).Google Scholar
  8. 8.
    P. McElhinney, C. Donaldson, L. Zhang, and W. He, IEEE Trans. Antennas Propag. 61 (2013), no. 3, 1453.Google Scholar
  9. 9.
    D. McDermott, J. Pretterebner, C. Chong, C. Kinney, M. Razeghi, J. Luhmann, and N.C., IEEE Trans. Microw. Theory Techn. 44 (1996), no. 2, 311.Google Scholar
  10. 10.
    G.G. Denisov, S.V. Samsonov, and D.I. Sobolev, Radiophys. Quantum Electron. 49 (2006), no. 12, 961.Google Scholar
  11. 11.
    A.W. Cross, W. He, A.D.R. Phelps, K. Ronald, C.G. Whyte, A.R. Young, C.W. Robertson, E.G. Rafferty, and J. Thomson, Appl. Phys. Lett. 90 (2007), 253501.Google Scholar
  12. 12.
    W. He, A.W. Cross, A.D.R. Phelps, K. Ronald, C.G. Whyte, S.V. Samsonov, V.L. Bratman, and G.G. Denisov, Appl. Phys. Lett. 89 (2006), 091504.Google Scholar
  13. 13.
    L. Zhang, S.V. Mishakin, W. He, S.V. Samsonov, M. McStravick, G.G. Denisov, A.W. Cross, V.L. Bratman, C.G. Whyte, C.W. Robertson, A.R. Young, K. Ronald, and A.D.R. Phelps, IEEE Trans. Microwave Theory Tech. 63 (2015), no. 3, 1090.Google Scholar
  14. 14.
    N.S. Ginzburg, A.A. Kaminsky, A.K. Kaminsky, N.Y. Peskov, S.N. Sedykh, A.P. Sergeev, and A.S. Sergeev, Phys. Rev. Lett. 84 (2000), 3574.Google Scholar
  15. 15.
    S.J. Cooke, A.W. Cross, W. He, and A.D.R. Phelps, Phys. Rev. Lett. 77 (1996), 4836.Google Scholar
  16. 16.
    D. Wagner, W. Bongers, W. Kasparek, F. Leuterer, F. Monaco, M. Munich, H. Schutz, J. Stober, M. Thumm, and H.V. Brand, EPJ Web of Conf. 87 (2015), 04012.Google Scholar
  17. 17.
    E. de Rijk, A. Macor, J.P. Hogge, S. Alberti, and J.P. Ansermet, Rev. Sci. Instrum. 82 (2011), no. 6, 066102.Google Scholar
  18. 18.
    C.K. Chong, D.B. McDermott, M.M. Razegh, N.C. Luhmann, J. Pretterebner, D. Wagner, M. Thumm, M. Caplan, and B. Kulke, IEEE Trans. Plasma Sci. 20 (1992), no. 3, 393.Google Scholar
  19. 19.
    C.S. Suitetm, (CST AG, Germany, available at
  20. 20.
    T.S. Chu and T. Itoh, IEEE Trans. Microw. Theory Techn. 34 (1986), no. 2, 280.Google Scholar
  21. 21.
    G.L. James, IEEE Trans. Microw. Theory Techn. 29 (1981), no. 10, 1059.Google Scholar
  22. 22.
    J. Neilson, P. Latham, M. Caplan, and W. Lawson, IEEE Trans. Microw. Theory Techn. 37 (1989), no. 8, 1165.Google Scholar
  23. 23.
    E.T. Itoh, Numerical techniques for microwave and millimeter-wave passive structures, Wiley, New York, 1989.Google Scholar
  24. 24.
    C.A. Coello Coello, IEEE Comput. Intell. Mag. 1 (2006), no. 1, 28.Google Scholar
  25. 25.
    W. He, C.R. Donaldson, L. Zhang, K. Ronald, P. McElhinney, and A.W. Cross, Phys. Rev. Lett. 165101 (2013), 110.Google Scholar
  26. 26.
    L. Zhang, W. He, A. Cross, A. Phelps, K. Ronald, and C. Whyte, IEEE Trans. Plasma Sci. 37 (2009), no. 3, 390.Google Scholar
  27. 27.
    L. Zhang, W. He, C. Donaldson, J. Garner, P. McElhinney, and A. Cross, IEEE Trans. Microw. Theory Techn. 63 (2015), no. 10, 3183.Google Scholar
  28. 28.
    C.G. Whyte, K. Ronald, A.R. Young, W. He, C.W. Robertson, D.H. Rowlands, and A.W. Cross, IEEE Trans. Plasma Sci. 40 (2012), no. 5, 1303.Google Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Liang Zhang
    • 1
  • Wenlong He
    • 1
  • Craig R. Donaldson
    • 1
  • Adrian W. Cross
    • 1
  1. 1.Department of Physics, SUPAUniversity of StrathclydeGlasgowUK

Personalised recommendations