CMOS-Compatible Room-Temperature Rectifier Toward Terahertz Radiation Detection

  • Volha Varlamava
  • Giovanni De Amicis
  • Andrea Del Monte
  • Stefano Perticaroli
  • Rosario Rao
  • Fabrizio Palma


In this paper, we present a new rectifying device, compatible with the technology of CMOS image sensors, suitable for implementing a direct-conversion detector operating at room temperature for operation at up to terahertz frequencies. The rectifying device can be obtained by introducing some simple modifications of the charge-storage well in conventional CMOS integrated circuits, making the proposed solution easy to integrate with the existing imaging systems. The rectifying device is combined with the different elements of the detector, composed of a 3D high-performance antenna and a charge-storage well. In particular, its position just below the edge of the 3D antenna takes maximum advantage of the high electric field concentrated by the antenna itself. In addition, the proposed structure ensures the integrity of the charge-storage well of the detector. In the structure, it is not necessary to use very scaled and costly technological nodes, since the CMOS transistor only provides the necessary integrated readout electronics. On-wafer measurements of RF characteristics of the designed junction are reported and discussed. The overall performances of the entire detector in terms of noise equivalent power (NEP) are evaluated by combining low-frequency measurements of the rectifier with numerical simulations of the 3D antenna and the semiconductor structure at 1 THz, allowing prediction of the achievable NEP.


Image detector Terahertz Rectifying antenna (rectenna) Direct terahertz detection Zero-bias detector Room-temperature detector 



The authors would like to thank Aptina for allowing the realization of the test structure in the state-of-the-art CMOS IS technology.


  1. 1.
    B.M. Fischer, H. Helm, P.U. Jepsen, “Chemical Recognition With Broadband THz Spectroscopy,” Proceedings of the IEEE, vol. 95, no. 8, pp. 1592-1604, 2007.CrossRefGoogle Scholar
  2. 2.
    R. Piesiewicz, T. Kleine-Ostmann, N. Krumbholz, D. Mittleman, M. Koch, J. Schoebel, and T. Kurner, “Short-Range Ultra-Broadband Terahertz Communications: Concepts and Perspectives”, IEEE Antennas Propag. Mag., vol. 49, p. 24, 2007.CrossRefGoogle Scholar
  3. 3.
    F.J. Federici, B. Schulkin, F. Huang, D. Gary, R. Barat, F. Oliveira, D. Zimdars, “THz imaging and sensing for security applications—explosives, weapons and drugs,” Semiconductor Science and Technology, vol. 20, pp. 266-280, 2005.CrossRefGoogle Scholar
  4. 4.
    A. Menikh, S. P. Mickan, H. Liu, R. Maccoll, and X. C. Zhang, “Label-free amplified bioaffinity detection using terahertz wave technology,” Biosens. Bioelectron, vol. 20, no. 3, pp. 658–62, 2004.CrossRefGoogle Scholar
  5. 5.
    J. Chen, M. Liang, L. Kang, B.B. Jin, W.W. Xu, P.H. Wu, W. Zhang, L. Jiang, N. Li, S.C. Shi, “Low Noise Receivers at 1.6 THz and 2.5 THz Based on Niobium Nitride Hot Electron Bolometer Mixers,” Applied Superconductivity, IEEE Transactions on, vol. 19, no. 3, pp. 278-281, 2009.CrossRefGoogle Scholar
  6. 6.
    D. Corcos, I. Brouk, M. Malits, A. Svetlitza, S. Stolyarova, A. Abramovich, E. Farber, N. Bachar, D. Elad, Y. Nemirovsky, “The TeraMOS sensor for monolithic passive THz imagers,” Microwaves, Communications, Antennas and Electronics Systems (COMCAS), 2011 I.E. International Conference on, pp. 1-4, 2011.Google Scholar
  7. 7.
    S.R. Kasjoo, Ai Min Song, “Terahertz Detection Using Nanorectifiers,” Electron Device Letters, IEEE, vol. 34, no. 12, pp. 1554-1556, 2013.CrossRefGoogle Scholar
  8. 8.
    Z. Wogong, E. Kasper, M. Oehme, M. Kaschel, V. Stefani, J. Schulze, “A monolithic integrated 85 GHz schottky rectenna with dynamic tuning range of the conversion voltage,” Radio-Frequency Integration Technology (RFIT), 2014 I.E. International Symposium on, pp. 1-3, 2014.Google Scholar
  9. 9.
    U.R. Pfeiffer, J. Grzyb, H. Sherry, A. Cathelin, A. Kaiser, “Toward low-NEP room-temperature THz MOSFET direct detectors in CMOS technology,” Infrared, Millimeter, and Terahertz Waves (IRMMW-THz), 2013 38th International Conference on, pp.1-2, 2013.Google Scholar
  10. 10.
    R. Al Hadi, H. Sherry, J. Grzyb, Zhao Yan, W. Forster, H.M. Keller, A. Cathelin, A. Kaiser, U.R. Pfeiffer, “A 1 k-Pixel Video Camera for 0.7–1.1 Terahertz Imaging Applications in 65-nm CMOS,” Solid-State Circuits, IEEE Journal of, vol. 47, no. 12, pp. 2999-3012, 2012.CrossRefGoogle Scholar
  11. 11.
    A. Del Monte, F. Palma, “Rettificatore per un Sensore di Radiazioni in Banda THz, in Particolare per Formazione di Immagini, e Sistema di Raccolta di Carica Comprendente Detto Rettificatore”, Italian Patent, 19 June 2014, No. RM2014A000323.Google Scholar
  12. 12.
    S. Kawahito, “Circuit and Device Technologies for CMOS functional Image Sensors,” Very Large Scale Integration, 2006 IFIP International Conference on, pp. 42-47, 2006.Google Scholar
  13. 13.
    K. R. Jha and G. Singh, “Terahertz Planar Antennas for Next Generation Communication”, Springer eBooks, 2014.Google Scholar
  14. 14.
    P. Nenzi, F. Tripaldi, V. Varlamava, F. Palma, M. Balucani, “On-chip THz 3D antennas,” Electronic Components and Technology Conference (ECTC), 2012 I.E. 62nd, pp.102-108, 2012.Google Scholar
  15. 15.
    V. Varlamava, F. Palma, P. Nenzi, M. Balucani, “Electric Field Enhancement in 3-D Tapered Helix Antenna for Terahertz Applications,” Terahertz Science and Technology, IEEE Transactions on, vol. 4, no. 3, pp. 360-367, 2014.CrossRefGoogle Scholar
  16. 16.
    V. Varlamava, F. Palma, P. Nenzi, M. Balucani, “Terahertz Sensor for Integrated Image Detector,” EUROSENSORS 2014, the 28th European Conference on Solid-State Transducers, 2014.Google Scholar
  17. 17.
    S. Boppel, A. Lisauskas, D. Seliuta, L. Minkevicius, L. Kasalynas, G. Valusis, V. Krozer and H. Roskos, “CMOS integrated antenna-coupled field-effect-transistors for the detection of 0.2 to 4.3 THz”, IEEE Transactions on Microwave Theory and Techniques, vol. 60, n. 12, December 2012.Google Scholar
  18. 18.
    E. Öjefors, U.R. Pfeiffer, A. Lisauskas and H.G. Roskos, “A 0.65 THz Focal-Plane Array in a Quarter-Micron CMOS Process Technology,” IEEE Journal of Solid-State Circuits, vol. 44, n. 7, July 2009.Google Scholar
  19. 19.
    E.R. Fossum, D.B. Hondongwa, “A Review of the Pinned Photodiode for CCD and CMOS Image Sensors,” Electron Devices Society, IEEE Journal of the, vol. 2, no. 3, pp. 33-43, 2014.CrossRefGoogle Scholar
  20. 20.
    M. A. Stettler, M.S. Lundstrom, “A microscopic study of transport in thin base silicon bipolar transistors,” Electron Devices, IEEE Transactions on, vol. 41, no. 6, pp. 1027-1033, 1994.CrossRefGoogle Scholar
  21. 21.
    O. Muscato, “Hydrodynamic transport models for an ultrathin base Si bipolar transistor,” Journal of Applied Physics 96, p.1219-1229, 2004.Google Scholar
  22. 22.
    R. Clerc, P. Palestri,; L. Selmi, “On the physical understanding of the kT-layer concept in quasi-ballistic regime of transport in nanoscale devices,” Electron Devices, IEEE Transactions on, vol. 53, no. 7, pp. 1634-1640, 2006.CrossRefGoogle Scholar
  23. 23.
    T.E. Humphrey, M.F. ODwyer, C. Zhang, R.A. Lewis, “Solid-state thermionics and thermoelectrics in the ballistic transport regime,” Journal of Applied Physics, vol. 98, no. 2, 2005.Google Scholar
  24. 24.
    H. Sherry, J. Grzyb, Y. Zhao, R. A. Hadi, A. Cathelin, A. Kaiser and U. Pfeiffer, “A 1 k-pixel CMOS camera chip for 25 fps real-time terahertz imaging applications”, 2012 I.E. Int. Solid-StateCircuits Conf. (ISSCC) Dig. Tech. Papers, pp. 252-254, 2012.Google Scholar
  25. 25.
    E. Öjefors, N. Baktash , Y. Zhao , R. Al Hadi , H. Sherry and U. Pfeiffer “Terahertz imaging detectors in a 65-nm CMOS-SOI technology”, 2010 Eur. Solid-State CircuitsConf. (ESSCIRC), pp. 486-489, 2010.Google Scholar
  26. 26.
    R. Al Hadi et al., “A broadband 0.6 to 1THz CMOS Imaging Detector with an Integrated Lens”, IEEE International Microwave Symp., Baltimore, pp. 1, June 2011.Google Scholar
  27. 27.
    R. Han, Y. Zhang, Y. Kim, D. Y. Kim, H. Shichijo, E. Afshari and O. Kenneth, “280 GHz and 860 GHz image sensors using Schottky-barrier diodes in 0.13 μm digital CMOS”, 2012 I.E. Int. Solid-State Circuits Conf. (ISSCC) Dig. Tech. Papers, pp. 254 -256, 2012.Google Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.Department of Information Engineering, Electronics, TelecommunicationsSapienza University of RomeRomeItaly
  2. 2.LFoundryAvezzanoItaly

Personalised recommendations