Advertisement

Index of Refraction and Absorption Coefficient Spectra of Paratellurite in the Terahertz Region

  • Márta Unferdorben
  • Andrea Buzády
  • János Hebling
  • Krisztián Kiss
  • Ivett Hajdara
  • László Kovács
  • Ágnes Péter
  • László Pálfalvi
Article

Abstract

Index of refraction and absorption coefficient spectra of pure paratellurite (α-TeO2) crystal as a potential material for terahertz (THz) applications were determined in the 0.25–2 THz frequency range at room temperature by THz time domain spectroscopy (THz-TDS). The investigation was performed with beam polarization both parallel (extraordinary polarization) and perpendicular (ordinary polarization) to the optical axis [001] of the crystal. Similarly to the visible spectral range, positive birefringence was observed in the THz range as well. It was shown that the values of the refractive index for extraordinary polarization are higher and show significantly larger dispersion than for the ordinary one. The absorption coefficient values are also larger for extraordinary polarization. The measured values were fitted by theoretical curves derived from the complex dielectric function containing independent terms of Lorentz oscillators due to phonon-polariton resonances. The results are compared with earlier publications, and the observed significant discrepancies are discussed.

Keywords

Paratellurite Terahertz frequency range Refractive index Absorption coefficient Time domain terahertz spectroscopy 

Notes

Acknowledgments

The authors thank Gábor Corradi for his help in improving the presentation of the manuscript.

Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    J. Leciejewicz, Z. Kristallogr. 116, 345 (1961)CrossRefGoogle Scholar
  2. 2.
    P. A. Thomas, J. Phys. C: Solid State Phys. 21, 4611 (1988)CrossRefGoogle Scholar
  3. 3.
    J. Liebertz, Krist. Tech. 4, 221 (1969)CrossRefGoogle Scholar
  4. 4.
    N. Uchida, Phys. Rev. B 4, 3736 (1971)CrossRefGoogle Scholar
  5. 5.
    D. S. Chemla, J. Jerphagnon, Appl. Phys. Lett. 20 222 (1972)CrossRefGoogle Scholar
  6. 6.
    S. Singh, W. A. Bonner, L. G. Van Uitert, Phys. Lett. A 38, 407 (1972)CrossRefGoogle Scholar
  7. 7.
    N. Berkaïne, E. Orhan, O. Masson, P. Thomas, J. Junquera, Phys. Rev. B 83, 245205 (2011)CrossRefGoogle Scholar
  8. 8.
    M. D. Ewbank, P. R. Newman, J. Appl. Phys. 53, 1150 (1982)CrossRefGoogle Scholar
  9. 9.
    B. Ferguson, X. C. Zhang, Nat. Mater. 1, 26 (2002)CrossRefGoogle Scholar
  10. 10.
    M. Sotome, N. Kida, R. Takeda, H. Okamoto, Phys. Rev. A 90, 033842 (2014)CrossRefGoogle Scholar
  11. 11.
    F. Schmidt, R. Voszka, Cryst. Res. Technol. 16 K127 (1981)Google Scholar
  12. 12.
    M. van Exter, C. Fattinger, D. Grischkowsky, Opt. Lett. 14, 1128 (1989)CrossRefGoogle Scholar
  13. 13.
    K. Wiesauer, C. Jördens, J. Infrared Milli. Terahz. Waves, 34, 663 (2013)CrossRefGoogle Scholar
  14. 14.
    S. Wang, Q. Liang, X. Tao, T. Dekorsy, Opt. Mat. Exp. 4, 575 (2014)CrossRefGoogle Scholar
  15. 15.
    X. C. Zhang, Introduction to THz wave photonics (Springer, Dordrecht, 2010), pp. 50CrossRefGoogle Scholar
  16. 16.
    L. Pálfalvi, J. Hebling, J. Kuhl, Á. Péter, K. Polgár, J. Appl. Phys. 97, 123505 (2005)CrossRefGoogle Scholar
  17. 17.
    M. Unferdorben, Z. Szaller, I. Hajdara, J. Hebling, L. Pálfalvi, J. Infrared Milli. Terahz. Waves 36, 1203 (2015)CrossRefGoogle Scholar
  18. 18.
    D. M. Korn, A. S. Pine, G. Dresselhaus, Phys. Rev. B 8, 768 (1973)CrossRefGoogle Scholar
  19. 19.
    M. Durand, B. Ayrault, Y. Marqueton, E. A. Decamps, Phys. Status Solidi B 78, 767 (1976)CrossRefGoogle Scholar
  20. 20.
    A. S. Pine, G. Dresselhaus, Phys. Rev. B 5, 4087 (1972)CrossRefGoogle Scholar
  21. 21.
    P. Y. Han, M. Tani, M Usami, S. Kono, R. Kersting, X.-C. Zhang. J. Appl. Phys 89, 2357 (2001)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Márta Unferdorben
    • 1
  • Andrea Buzády
    • 1
  • János Hebling
    • 1
    • 2
    • 3
  • Krisztián Kiss
    • 1
  • Ivett Hajdara
    • 4
  • László Kovács
    • 4
  • Ágnes Péter
    • 4
  • László Pálfalvi
    • 1
  1. 1.Institute of PhysicsUniversity of PécsPécsHungary
  2. 2.MTA-PTE High-Field Terahertz Research GroupPécsHungary
  3. 3.Szentágothai Research CentreUniversity of PécsPécsHungary
  4. 4.Wigner Research Centre for PhysicsHungarian Academy of SciencesBudapestHungary

Personalised recommendations