Characterization of ErAs:GaAs and LuAs:GaAs Superlattice Structures for Continuous-Wave Terahertz Wave Generation through Plasmonic Photomixing

  • Shang-Hua Yang
  • Rodolfo Salas
  • Erica M. Krivoy
  • Hari P. Nair
  • Seth R. Bank
  • Mona Jarrahi
Article

Abstract

We investigate the impact of ErAs:GaAs and LuAs:GaAs superlattice structures with different LuAs/ErAs nanoparticle depositions and superlattice geometries on terahertz radiation properties of plasmonic photomixers operating at a 780-nm optical wavelength. Our analysis indicates the crucial impact of carrier drift velocity and carrier lifetime on the performance of plasmonic photomixers. While higher carrier drift velocities enable higher optical-to-terahertz conversion efficiencies by offering higher quantum efficiencies, shorter carrier lifetimes allow achieving higher optical-to-terahertz conversion efficiencies by mitigating the negative impact of destructive terahertz radiation from slow photocarriers and preventing the carrier screening effect.

Keywords

Photomixers Plasmonics Terahertz 

Notes

Acknowledgments

The authors gratefully acknowledge the financial support from Presidential Early Career Award for Scientists and Engineers (# N00014-14-1-0573 and # W911NF-09-1-0434), NSF CAREER Award (# N00014-11-1-0096), and ONR Young Investigator Award (# N00014-12-1-0947).

References

  1. 1.
    S. Preu, G. H. Dohler, S. Malzer, L. J. Wang, and A. C. Gossard, J. Appl. Phys. 109, 061301 (2011).CrossRefGoogle Scholar
  2. 2.
    E. R. Brown, Int. J. High Speed Electron. Syst. 13, 497 (2003).CrossRefGoogle Scholar
  3. 3.
    J. Bjarnason, J. Chan, A. W. M. Lee, E. R. Brown, D. C. Driscoll, M. Hanson, A. C. Gossard, and R. E. Muller, Appl. Phys. Lett. 85, 3983–3985 (2004).CrossRefGoogle Scholar
  4. 4.
    E. Peytavit, S. Lepilliet, F. Hindle, C. Coinon, T. Akalin, G. Ducournau, G. Mouret, and J.-F. Lampin, Appl. Phys. Lett. 99, 223508 (2011).CrossRefGoogle Scholar
  5. 5.
    E. Peytavit, C. Coinon, and J.-F. Lampin, J. Appl. Phys. 109, 016101 (2011).CrossRefGoogle Scholar
  6. 6.
    J. Mangeney, A. Merigault, N. Zerounian, P. Crozat, K. Blary, and J. F. Lampin, Appl. Phys. Lett. 91, 241102 (2007).CrossRefGoogle Scholar
  7. 7.
    H. Ito, T. Yoshimatsu, H. Yamamoto, and T. Ishibashi, Appl. Phys. Express 6, 064101 (2013)CrossRefGoogle Scholar
  8. 8.
    H. Ito, F. Nakajima, T. Furuta, K. Yoshino, Y. Hirota and T. Ishibashi, Electron. Lett. 39, 1828 (2003)CrossRefGoogle Scholar
  9. 9.
    F. Nakajima, T. Furuta, and H. Ito, Electron. Lett. 40, 1297–1299 (2004)CrossRefGoogle Scholar
  10. 10.
    C. W. Berry, M. R. Hashemi, S. Preu, H. Lu, A. C. Gossard, M. Jarrahi, Appl. Phys. Lett. 105, 011121 (2014).CrossRefGoogle Scholar
  11. 11.
    S.-H. Yang, M. Jarrahi, Appl. Phys. Lett. 107, 131111 (2015)CrossRefGoogle Scholar
  12. 12.
    G. C. Loata, M. D. Thomson, T. Löffler, H. G. Roskos, Appl. Phys. Lett. 91, 232506 (2007).CrossRefGoogle Scholar
  13. 13.
    M. Griebel, J. H. Smet, D. C. Driscoll, J. Kuhl, C. A. Diez, N. Freytag, C. Kadow, A. C. Gossard, K. von Klitzing, Nature Mater. 2, 122-126 (2003).CrossRefGoogle Scholar
  14. 14.
    R. P. Prasankumar, A. Scopatz, D. J. Hilton, A. J. Taylor, R. D. Averitt, J. M. Zide, A. C. Gossard, “Appl. Phys. Lett. 86, 201107 (2005).CrossRefGoogle Scholar
  15. 15.
    E. M. Krivoy, H. P. Nair, A. M. Crook, S. Rahimi, S. J. Maddox, R. Salas, D. A. Ferrer, V. D. Dasika, D. Akinwande, S. R. Bank, Appl. Phys. Lett. 101, 141910 (2012).CrossRefGoogle Scholar
  16. 16.
    C. Kadow, S. B. Fleischer, J. P. Ibbetson, J. E. Bowers, A. C. Gossard, J. W. Dong, C. J. Palmstrom, Appl. Phys. Lett. 75, 3548-3550 (1999).CrossRefGoogle Scholar
  17. 17.
    S.-G. Park, K. H. Jin, M. Yi, J. C. Ye, J. Ahn, and K.-H. Jeong, ACS Nano 6, 2026 (2012).CrossRefGoogle Scholar
  18. 18.
    S. Liu, X. Shou, and A. Nahata, IEEE Trans. Terahertz Sci. Technol. 1, 412 (2011).CrossRefGoogle Scholar
  19. 19.
    S.-G. Park, Y. Choi, Y.-J. Oh, and K.-H. Jeong, Opt. Express 20, 25530 (2012).CrossRefGoogle Scholar
  20. 20.
    M. Jarrahi, IEEE Trans. Terahertz Sci. Technol. 5, 391-397 (2015).CrossRefGoogle Scholar
  21. 21.
    N. T. Yardimci, S.-H. Yang, C. W. Berry, M. Jarrahi, IEEE Trans. Terahertz Sci. Technol. 5, 223-229 (2015).CrossRefGoogle Scholar
  22. 22.
    S.-H. Yang, M. R. Hashemi, C. W. Berry, M. Jarrahi, IEEE Trans. Terahertz Sci. Technol. 4, 575-581 (2014).CrossRefGoogle Scholar
  23. 23.
    C. W. Berry, N. Wang, M. R. Hashemi, M. Unlu, M. Jarrahi, Nature Communications 4, 1622 (2013).CrossRefGoogle Scholar
  24. 24.
    C. W. Berry and M. Jarrahi, New J. Phys. 14, 105029 (2012).CrossRefGoogle Scholar
  25. 25.
    C. W. Berry, M. R. Hashemi, M. Jarrahi, Appl. Phys. Lett. 104, 081122 (2014).CrossRefGoogle Scholar
  26. 26.
    Y. Huo, G. W. Taylor, and R. Bansal, J. Infrared, Millimeter, Terahertz Waves 23, 819–839 (2002).CrossRefGoogle Scholar
  27. 27.
    E. R. Brown, A. W. M. Lee, B. S. Navi, and J. E. Bjarnason, Microwave Opt. Technol. Lett. 48, 524–529 (2006).CrossRefGoogle Scholar
  28. 28.
    C. W. Berry, M. Jarrahi, J. Infrared, Millimeter and Terahertz Waves 33, 1182-1189 (2012).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Shang-Hua Yang
    • 1
    • 2
  • Rodolfo Salas
    • 3
  • Erica M. Krivoy
    • 3
  • Hari P. Nair
    • 3
  • Seth R. Bank
    • 3
  • Mona Jarrahi
    • 1
    • 2
  1. 1.Electrical Engineering DepartmentUniversity of California Los AngelesLos AngelesUSA
  2. 2.Electrical Engineering and Computer Science DepartmentUniversity of MichiganAnn ArborUSA
  3. 3.Electrical and Computer Engineering DepartmentUniversity of Texas at AustinAustinUSA

Personalised recommendations