A 65 nm CMOS LNA for Bolometer Application

  • Tom Nan HuangEmail author
  • Chirn Chye Boon
  • Forest Xi Zhu
  • Xiang Yi
  • Xiaofeng He
  • Guangyin Feng
  • Wei Meng Lim
  • Bei Liu


Modern bolometers generally consist of large-scale arrays of detectors. Implemented in conventional technologies, such bolometer arrays suffer from integrability and productivity issues. Recently, the development of CMOS technologies has presented an opportunity for the massive production of high-performance and highly integrated bolometers. This paper presents a 65-nm CMOS LNA designed for a millimeter-wave bolometer’s pre-amplification stage. By properly applying some positive feedback, the noise figure of the proposed LNA is minimized at under 6 dB and the bandwidth is extended to 30 GHz.


Low-noise amplifier CMOS Bolometer Passive imaging 


  1. 1.
    Richards P. L.: Bolometers for infrared and millimeter waves. J. Appl. Phys.76(1), 1-24, (1994)CrossRefGoogle Scholar
  2. 2.
    May T. et. al : Design, realization, and characteristics of a transition edge bolometer for sub-millimeter wave astronomy, Review of Scientific Instruments. 83, 114502, (2012)Google Scholar
  3. 3.
    Lynch J. J. et al.: Passive millimeter-wave imaging module with preamplified zero-bias detection. IEEE Tran. Microw. Theory Tech. 56(7), 1592-1600, (2008)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Tiuri, M.E.: Radio astronomy receivers. IEEE Trans. Antennas Propagat. 12(7), 930-938, (1964)CrossRefGoogle Scholar
  5. 5.
    Dietlein C. D. et. al: Phenomenology of passive broadband terahertz images. 4th ESA Millimeter Wave Technol. Applicat. Workshop, Espoo, Finland, (2006)Google Scholar
  6. 6.
    Cohen E. D.: The MIMIC program—a retrospective. IEEE Microwave Magazine. 13(4), 77-88, (2012)CrossRefGoogle Scholar
  7. 7.
    May J. W., Rebeiz G. M.: Design and characterization of W -Band SiGe RFICs for passive millimeter-wave imaging. IEEE Tran. Microw. Theory Tech. 58(5), 1420-1430, (2010)CrossRefGoogle Scholar
  8. 8.
    Gilreath L., Jain V., Heydari P.: Design and analysis of a W-Band SiGe direct-detection-based passive imaging receiver. IEEE J. Solid-State Circuits. 46(10), 2240-2252, (2011)CrossRefGoogle Scholar
  9. 9.
    Bi X. J. et al.: A 19.2 mW, > 45 dB gain and high-selectivity 94 GHz LNA in 0.13 um SiGe BiCMOS. IEEE Microw. Wireless Comp. Lett. 23(5), 261-263, (2013)CrossRefGoogle Scholar
  10. 10.
    Jiang Y. S. et al.: A 86 to 108 GHz amplifier in 90 nm CMOS. IEEE Microw. Wireless Compon. Lett. 18(2), 124–126, (2008)CrossRefGoogle Scholar
  11. 11.
    Yi X. et al.: A 57.9-to-68.3 GHz 24.6 mW frequency synthesizer with In-phase injection-coupled QVCO in 65 nm CMOS technology. IEEE J. Solid-State Circuits. 49(2), 347–359, (2014)CrossRefGoogle Scholar
  12. 12.
    Khanpour M. et. al.: A wideband W-band receiver front-end in 65-nm CMOS. IEEE J. Solid-State Circuits, 43(8), 1717–1730, (2008)Google Scholar
  13. 13.
    Lu D. R. et al.: A 75.5-to-120.5-GHz, high-gain CMOS low-noise amplifier. 2012 I.E. Int. Microwave Symp. Dig.1-4, (2012)Google Scholar
  14. 14.
    Lee T. H.: The design of CMOS radio-frequency integrated circuits. Cambridge Univ. Press, 2nd ed. (2004)Google Scholar
  15. 15.
    Inui C., Lai I. C. H., Fujishima M.: 60GHz CMOS current-reuse cascade amplifier. Microwave Conference Asia-Pacific, 1-4, (2007)Google Scholar
  16. 16.
    Hsieh H. H. et al.: 60GHz high-gain low-noise amplifiers with a common-gate inductive feedback in 65nm CMOS. 2011 I.E. Radio Frequency Integrated Circuits Symposium, 1-4, (2001)Google Scholar
  17. 17.
    Janssens J. and Steyaert M.: CMOS cellular receiver front-ends: from specification to realization. Boston, MA: Kluwer, (2002)Google Scholar
  18. 18.
    Sandström D. et al.: W-band CMOS amplifiers achieving +10dBm saturated output power and 7.5dB NF. 2009 I.E. Solid-State Circuits Conference Digest of Technical Papers, 486–487, (2009)Google Scholar
  19. 19.
    Yang Y., Cacina S., Rebeiz G. M.: A SiGe BiCMOS W-Band LNA with 5.1 dB NF at 90 GHz. 2013 I.E. Compound Semiconductor Integrated Circuit Symposium, 1-4, (2013)Google Scholar
  20. 20.
    Song P. et al.: A high gain, W-band SiGe LNA with sub-4.0 dB noise figure. 2012 I.E. Int. Microwave Symp. Dig., 1-3, (2014)Google Scholar
  21. 21.
    Zhou L. et al.: A W-band CMOS receiver chipset for millimeter-wave radiometer systems. IEEE J. Solid-State Circuits, 46(2), 378–391, (2011)CrossRefGoogle Scholar
  22. 22.
    Tomkins A., Garcia P., Voinigescu S. P.: A passive W-band imaging receiver in 65-nm bulk CMOS. IEEE J. Solid-State Circuits, 45(10), 1981–1991, (2010)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Tom Nan Huang
    • 1
    Email author
  • Chirn Chye Boon
    • 1
  • Forest Xi Zhu
    • 2
  • Xiang Yi
    • 1
  • Xiaofeng He
    • 1
  • Guangyin Feng
    • 1
  • Wei Meng Lim
    • 3
  • Bei Liu
    • 1
  1. 1.Virtus, the IC Design Center of ExcellenceNanyang Technological UniversitySingaporeSingapore
  2. 2.Macquarie UniversitySydneyAustralia
  3. 3.CascadeMicrotech, Singapore, Pte., Ltd.SingaporeSingapore

Personalised recommendations