Field Formation in the Interaction Space of Gyrotrons

Article

Abstract

For gyrotron applications in plasma installations, one of the most important factors is the gyrotron efficiency. To maximize the interaction efficiency, it is necessary not only to optimize such operating parameters as the magnetic field, beam voltage, and current but also the axial profile of the electromagnetic (EM) field in the interaction space. The present paper describes a study of the effect of the profile of an irregular waveguide serving as a resonator on the axial structure of the EM field. Specific attention is paid to the profile of the uptaper connecting the regular part of a resonator to the output waveguide. Conditions of applicability of the nonuniform string equation, which is widely used in gyrotron designs for finding the axial structure of the EM field, are discussed. Also discussed are the occurrence of reflections from a smooth uptaper and the analogy between the nonuniform string equation and the stationary Schrodinger equation.

Keywords

Gyrotron Open resonator Potential well 

Notes

Acknowledgments

The work of O.D. was supported by the Latvian grant no. 237/2012. The authors are grateful to M. I. Petelin for numerous discussions and insightful comments.

References

  1. 1.
    K. Sakamoto, Fusion Science and Technology, 52, 145 (2007).Google Scholar
  2. 2.
    M. Thumm, Int. J. Infrared Millimeter Waves, 26, 483–503 (2005).CrossRefGoogle Scholar
  3. 3.
    G. G. Denisov, V. E. Zapevalov, A. G. Litvak, and V. E. Myasnikov, Radiophysics and Quantum Electronics, 46, 757 (2003).CrossRefGoogle Scholar
  4. 4.
    4.H. Jory, M. Blank, P. Borchard, P. Cahalan, S. Cauffmann T. S. Chu, and K. Felch, “High Energy Density and High Power RF”, Eds. D. K. Abe and G. S. Nusinovich, AIP Conf. Proc., 807, Melville, New York, 2006, p. 180.Google Scholar
  5. 5.
    V. A. Flyagin, A. V. Gaponov, M. I. Petelin, and V. K. Yulpatov, IEEE Trans. Microwave Theory and Techniques, MTT-25, 514 (1977).CrossRefGoogle Scholar
  6. 6.
    G. S. Nusinovich, “Introduction to the Physics of Gyrotrons”, The Johns Hopkins University Press, Baltimore-London, 2004.Google Scholar
  7. 7.
    T. Omori, M. A. Henderson, F. Albajar, S. Alberti, U. Baruah, T. S. Bigelow et al., Fusion Eng. Design, 86, 951–954 (2011).CrossRefGoogle Scholar
  8. 8.
    V. Erckmann, G. Dammertz, D. Dorst, L. Empacher, W. Forster, G. Gantenbein et al., IEEE Trans. Plasma Sci., 27, 538–546 (1999).CrossRefGoogle Scholar
  9. 9.
    S. N. Vlasov, G. M. Zhislin, I. M. Orlova, M. I. Petelin, and G. G. Rogacheva, Radiophysics and Quantum Electronics, 12, 972 (1969)CrossRefGoogle Scholar
  10. 10.
    V. E. Zapevalov and M. A. Moiseev, Radiophysics and Quantum Electronics, 47, 520 (2004).CrossRefGoogle Scholar
  11. 11.
    E. M. Choi, M. A. Shapiro, J. R. Sirigiri, and R. J. Temkin, Phys. Plasmas, 14, 093302 (2007).CrossRefGoogle Scholar
  12. 12.
    O. V. Sinitsyn and G. S. Nusinovich, Phys. Plasmas, 16, 023101 (2009).CrossRefGoogle Scholar
  13. 13.
    O. V. Sinitsyn, G. S. Nusinovich, and T. M. Antonsen, Jr., Phys. Plasmas, 17, 083106 (2010).CrossRefGoogle Scholar
  14. 14.
    M. Thumm, J. Infrared, Millimeter and Infrared Waves, 35, 1011 (2014).CrossRefGoogle Scholar
  15. 15.
    M. K. Hornstein, V. S. Bajaj, R. G. Griffin, K. E. Kreischer, I. Mastovsky, M. A. Shapiro, J. R. Sirigiri, and R. J. Temkin, IEEE Trans. Electron Devices, 52, 798 (2005).CrossRefGoogle Scholar
  16. 16.
    A. C. Torrezan, M. A. Shapiro, J. R. Sirigiri, R. J. Temkin, and R. G. Griffin, IEEE Trans. Electron Devices, 58, 2777 (2011).CrossRefGoogle Scholar
  17. 17.
    T. Idehara, I. Ogawa, La Agusu, T. Kanemaki, S. Mitsudo, and T. Saito, Int. J. Infrared Millimeter Waves, 28, 433 (2007).Google Scholar
  18. 18.
    Y. J. Huang, L. H. Yeh, and K. R. Chu, Phys. Plasmas, 21, 103112 (2014).CrossRefGoogle Scholar
  19. 19.
    R. J. Temkin, Int. J. Infrared and Millimeter Waves, 2, 629 (1981).CrossRefGoogle Scholar
  20. 20.
    Q. F. Li and K. R. Chu, Int. J. Infrared and Millimeter Waves, 3, 705 (1982).CrossRefGoogle Scholar
  21. 21.
    J. Jelonnek, F. Albajar, S. Alberti, K. Avramidis, P. Benin, T. Bonicelli et al., IEEE Trans. Plasma Sci., 42, 1135 (2014)CrossRefGoogle Scholar
  22. 22.
    B. Z. Katsenelenbaum, “The theory of irregular waveguides with slowly variable parameters”, Acad. Sciences USSR, Moscow, (1961).Google Scholar
  23. 23.
    S. A. Schelkunoff, Bell System Techn. Journal, 31, 784 (1952).CrossRefMathSciNetGoogle Scholar
  24. 24.
    G. Reiter, The Inst. Electrical Engineers, paper No. 3028, p. 54 (Sept. 1959)Google Scholar
  25. 25.
    Sh. Ye. Tsimring and V. G. Pavelyev, Radiotekhn. Electron., 27, 1099 (1982).Google Scholar
  26. 26.
    N. F. Kovalev, Sov. J. Commun. Techn. Electron., 31 (1) 60-64 (1985).MathSciNetGoogle Scholar
  27. 27.
    M. Botton, T. M. Antonsen, Jr., B. Levush, K. T. Nguyen, and A. N. Vlasov, IEEE Trans. Plasma Sci., 26, 882 (1998).CrossRefGoogle Scholar
  28. 28.
    L. A. Weinstein, “Open Resonators and Open Waveguides”, Boulder, CO: Golem Press, 1969.Google Scholar
  29. 29.
    A. G. Fox and T. Li, Bell System Technical Journal, 40, 453–488 (1961).CrossRefGoogle Scholar
  30. 30.
    V. L. Bratman, M. A. Moiseev, M. I. Petelin, and R. E. Erm, Radiophysics Quantum Electron., 16, 474 (1973).CrossRefGoogle Scholar
  31. 31.
    L. D. Landau and E. M. Lifshitz, “Quantum Mechanics”, Pergamon Press (London-Paris) and Addison-Wesley Publ. Co., (Reading, MA, USA), Ch. III, (1958).Google Scholar
  32. 32.
    R. H. Fowler and L. Nordheim. Proc. Roy. Soc., A119, 173 (1928).CrossRefGoogle Scholar
  33. 33.
    V. V. Nesvyzhevsky, H. G. Borner, A. K. Petukhov, H. Abele, S. Baessler et al., Nature, 415, 297 (2002).CrossRefGoogle Scholar
  34. 34.
    Mi. I. Petelin and M. L. Tai, „Dissipative filtration of modes in a flow of “levitating“ neutrons”, JETP, 147, No. 6, 1083–1086 (2015).Google Scholar
  35. 35.
    N. S. Ginzburg, G. S. Nusinovich, and N. A. Zavolsky, Int. J. Electron., 61, 881 (1986).CrossRefGoogle Scholar
  36. 36.
    G. S. Nusinovich, M. Yeddulla, T. M. Antonsen, Jr., and A. N. Vlasov, Phys. Rev. Lett., 96, 125101 (2006).CrossRefGoogle Scholar
  37. 37.
    N. S. Ginzburg, A. S. Sergeev, and I. V. Zotova, Phys. Plasmas, 22, 033101 (2015).CrossRefGoogle Scholar
  38. 38.
    O. Dumbrajs and H. Kalis, Phys. Plasmas, 22, 053113 (2015).CrossRefGoogle Scholar
  39. 39.
    F. Braunmueller, T. M. Tran, Q. Vuillemin, S. Alberti, J. Genoud, J.-Ph Hogge and M. Q. Tran, Phys. Plasmas, 22, 063115 (2015).CrossRefGoogle Scholar
  40. 40.
    K. A. Avramidis, Z. C. Ioannidis, S. Kern, A. Samartsev, I. Gr. Pagonakis, I. G. Tigelis, and J. Jelonnek, Phys. Plasmas, 22, 053106 (2015).Google Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.Institute for Research in Electronics and Applied PhysicsUniversity of MarylandCollege ParkUSA
  2. 2.Institute of Solid State PhysicsUniversity of LatviaRigaLatvia

Personalised recommendations