Status, Operation, and Extension of the ECRH System at ASDEX Upgrade

  • D. Wagner
  • J. Stober
  • F. Leuterer
  • F. Monaco
  • S. Müller
  • M. Münich
  • C. J. Rapson
  • M. Reich
  • M. Schubert
  • H. Schütz
  • W. Treutterer
  • H. Zohm
  • M. Thumm
  • T. Scherer
  • A. Meier
  • G. Gantenbein
  • J. Jelonnek
  • W. Kasparek
  • C. Lechte
  • B. Plaum
  • T. Goodman
  • A. G. Litvak
  • G. G. Denisov
  • A. Chirkov
  • V. Zapevalov
  • V. Malygin
  • L. G. Popov
  • V. O. Nichiporenko
  • V. E. Myasnikov
  • E. M. Tai
  • E. A. Solyanova
  • S. A. Malygin
  • ASDEX Upgrade Team
Article

Abstract

The upgraded electron cyclotron resonance heating (ECRH) system at ASDEX Upgrade (AUG) has been routinely used with eight gyrotrons during the last experimental campaign. A further upgrade will replace the existing system of four short-pulse (140 GHz, 2 s, 500 kW) gyrotrons. The final goal is to have around 6.5–7 MW at 140 GHz (or 5.5 MW at 105 GHz) from eight units available in the plasma during the whole AUG discharge (10 s). The system operates at 140 and 105 GHz with X2, O2 and X3 schemes. For B > 3 T also an ITER-like O1-scenario can be run using the 105 GHz option. Four of the eight launching antennas are capable of fast poloidal movements necessary for real-time control of the location of power deposition.

Keywords

Electron cyclotron resonance heating Two-frequency gyrotron Millimeter wave stray radiation 

References

  1. 1.
    G.G. Denisov et al., Multi-Frequency Gyrotron with BN Brewster Window, Proc. Joint 31st Int. Conf. Infrared and Millimeter Waves and 14th Int. Conf. on Terahertz Electronics, Shanghai, China (2006), p.75.Google Scholar
  2. 2.
    J. Stober et al., ECRH on ASDEX Upgrade - System Status, Feed-Back Control, Plasma Physics Results -, EC-17 / EPJ Web of Conferences, 32 (2012), 02011.Google Scholar
  3. 3.
    H. Höhnle et al., Extension of the ECRH Operational Space with O2 and X3 Heating Schemes to Control Tungsten Accumulation in ASDEX Upgrade, Nuclear Fusion 51 (2011) 083013.CrossRefGoogle Scholar
  4. 4.
    M. Schubert et al., Machine Safety Issues with respect to the Extension of EXRH Systems at ASDEX Upgrade, EC-18 / EPJ Web of Conferences, 87 (2015), 02010.Google Scholar
  5. 5.
    M. Reich et al., Real-time Control of NTMs Using ECCD at ASDEX Upgrade, 25th IAEA Fusion Energy Conference (FEC 2014).Google Scholar
  6. 6.
    M. Henderson et al., The targeted Heating and Current Drive Applications for the ITER Electron Cyclotron System, Physics of Plasmas 22, 021808 (2015).CrossRefGoogle Scholar
  7. 7.
    D. Wagner et al., Feed Forward Polarization Control during ECRH discharges at ASDEX Upgrade, Fusion Science and Technology 58, 2 (2010), 658–665.Google Scholar
  8. 8.
    M. Bornatici et al., Electron Cyclotron Emission and Absorption in Fusion Plasmas, Nucl. Fusion 23, 1153–1257 (1983).CrossRefGoogle Scholar
  9. 9.
    E. Poli et al., TORBEAM, a Beam Tracing Code for Electron-Cyclotron Waves in Tokamak Plasmas, Comput. Phys. Commun. 136, 90 (2001).CrossRefMATHGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • D. Wagner
    • 1
  • J. Stober
    • 1
  • F. Leuterer
    • 1
  • F. Monaco
    • 1
  • S. Müller
    • 1
  • M. Münich
    • 1
  • C. J. Rapson
    • 1
  • M. Reich
    • 1
  • M. Schubert
    • 1
  • H. Schütz
    • 1
  • W. Treutterer
    • 1
  • H. Zohm
    • 1
  • M. Thumm
    • 2
  • T. Scherer
    • 3
  • A. Meier
    • 3
  • G. Gantenbein
    • 2
  • J. Jelonnek
    • 2
  • W. Kasparek
    • 4
  • C. Lechte
    • 4
  • B. Plaum
    • 4
  • T. Goodman
    • 5
  • A. G. Litvak
    • 6
  • G. G. Denisov
    • 6
  • A. Chirkov
    • 6
  • V. Zapevalov
    • 6
  • V. Malygin
    • 6
  • L. G. Popov
    • 7
  • V. O. Nichiporenko
    • 7
  • V. E. Myasnikov
    • 7
  • E. M. Tai
    • 7
  • E. A. Solyanova
    • 7
  • S. A. Malygin
    • 7
  • ASDEX Upgrade Team
    • 1
  1. 1.Max-Planck-Institut für PlasmaphysikGarchingGermany
  2. 2.Institut für Hochleistungsimpuls- und MikrowellentechnikKarlsruheGermany
  3. 3.Institut für Angewandte Materialien-AWP, Karlsruhe Insitute of TechnologyKarlsruheGermany
  4. 4.Institut für Grenzflächenverfahrenstechnik und Plasmatechnologie, Universität StuttgartStuttgartGermany
  5. 5.École Polytechnique Fédérale de Lausanne (EPFL)Centre de Recherches en Physique des Plasmas (CRPP)LausanneSwitzerland
  6. 6.Institute of Applied Physics, RASNizhny NovgorodRussia
  7. 7.GYCOM LtdNizhny NovgorodRussia

Personalised recommendations