Advertisement

Review of terahertz technology development at INO

  • Denis Dufour
  • Linda Marchese
  • Marc Terroux
  • Hassane Oulachgar
  • Francis Généreux
  • Michel Doucet
  • Luc Mercier
  • Bruno Tremblay
  • Christine Alain
  • Patrick Beaupré
  • Nathalie Blanchard
  • Martin Bolduc
  • Claude Chevalier
  • Dominic D’Amato
  • Yan Desroches
  • François Duchesne
  • Lucie Gagnon
  • Samir Ilias
  • Hubert Jerominek
  • François Lagacé
  • Julie Lambert
  • Frédéric Lamontagne
  • Loïc Le Noc
  • Anne Martel
  • Ovidiu Pancrati
  • Jacques-Edmond Paultre
  • Tim Pope
  • Francis Provençal
  • Patrice Topart
  • Carl Vachon
  • Sonia Verreault
  • Alain Bergeron
Article

Abstract

Over the past decade, INO has leveraged its expertise in the development of uncooled microbolometer detectors for infrared imaging to produce terahertz (THz) imaging systems. By modifying its microbolometer-based focal plane arrays to enhance absorption in the THz bands and by developing custom THz imaging lenses, INO has developed a leading-edge THz imaging system, the IRXCAM-THz-384 camera, capable of exploring novel applications in the emerging field of terahertz imaging and sensing. Using appropriate THz sources, results show that the IRXCAM-THz-384 camera is able to image a variety of concealed objects of interest for applications such as non-destructive testing and weapons detections. By using a longer wavelength (94 GHz) source, it is also capable of sensing the signatures of various objects hidden behind a drywall panel. This article, written as a review of THz research at INO over the past decade, describes the technical components that form the IRXCAM-THz-384 camera and the experimental setup used for active THz imaging. Image results for concealed weapons detection experiments, an exploration of wavelength choice on image quality, and the detection of hidden objects behind drywall are also presented.

Keywords

Terahertz Imaging Camera Lenses Non-destructive testing Concealed weapons 

Notes

Conflict of Interest

The authors declare that they have no competing interests.

References

  1. 1.
    “Advanced Photonix, Inc. Announces Terahertz Phase II Contract Award,” (2007). Retrieved April 1, 2014 from http://advancedphotonix.investorroom.com/index.php?s=43&item=46
  2. 2.
    “Terahertz in the Pharmaceutical Industry,” (2013). Retrieved April 1, 2014 from http://www.teraview.com/applications/pharmaceutical/
  3. 3.
    D. Zimdars, et al., “Time Domain Terahertz Imaging of Threats in Luggage and Personnel,” Journal of High Speed Electronics and Systems, vol. 17, pp. 271–281, 2007.CrossRefGoogle Scholar
  4. 4.
    J. Oden et al.,“Imaging of broadband terahertz beams using an array of antenna-coupled microbolometers operating at room temperature”, Optics Express, Vol. 21, Issue 4, pp. 4817–4825, 2013.  10.1364/OE.21.004817 CrossRefGoogle Scholar
  5. 5.
    J. Grant et al., “A monolithic resonant terahertz sensor element comprising a metamaterial absorber and micro-bolometer”, Laser & Photonics Reviews Volume 7, Issue 6, pages 1043–1048, 2013. DOI:  10.1002/lpor.201300087 MathSciNetCrossRefGoogle Scholar
  6. 6.
    H. Oulachgar, et al., “Development of MEMS microbolometer detector for THz applications”, 35th International Conference on Infrared, Millimeter, and Terahertz Waves, IRMMW-THz 2010, 5612408, 2010.Google Scholar
  7. 7.
    T. Pope, et al., “Uncooled detector, optics, and camera development for THz imaging”, Proc. of SPIE, Vol. 7311, 73110L, 2009.CrossRefGoogle Scholar
  8. 8.
    F. J. González, et al., “Antenna-Coupled Infrared Detectors for Imaging Applications”, IEEE Journal of Selected Topics in Quantum Electronics, vol. 11, 1, pp. 117–120, 2005.CrossRefGoogle Scholar
  9. 9.
    H. Oulachgar, et al., “Design and Microfabrication of Frequency Selective Uncooled Microbolometer Focal Plane Array for Terahertz Imaging”, Proceedings of the 38th conference of IRMMW-THz, Mainz-Germany, 2013.Google Scholar
  10. 10.
    H. Oulachgar, et al., “Optimization of design and microfabrication of metamaterial-based absorbers for terahertz microbolometers”, Proc. of 39th International Conference on Infrared, Millimeter and Terahertz Waves, IRMMW-THz, 2014.Google Scholar
  11. 11.
    C. Chevalier, et al., “Introducing a 384x288 pixel terahertz camera core”, Proc. of SPIE, Vol. 8624, 86240F, 2013.CrossRefGoogle Scholar
  12. 12.
    L. Le Noc, et al., “Modular infrared 640 × 480 pixel camera core for rapid device integration,” Proc. SPIE 7298, 7298–27, 2009.Google Scholar
  13. 13.
    L. Le Noc, et al., “Towards a very high-resolution infrared camera core,” Proc. SPIE 8012, 80123P, 2011.CrossRefGoogle Scholar
  14. 14.
    L. Marchese, et al., “A microbolometer-based THz imager,” Proc. SPIE 7671, 76710Z (2010).CrossRefGoogle Scholar
  15. 15.
    A. Bergeron, et al., “Introducing a sub-wavelength pixel THz camera for the understanding of close pixel-to-wavelength imaging challenges”, Proc. of SPIE, Vol. 8373, 83732A, 2012.CrossRefGoogle Scholar
  16. 16.
    A. Bergeron, et al., “Resolution capability comparison of infrared and terahertz imagers”, Proc. of SPIE, Vol. 8188, 81880I, 2011.CrossRefGoogle Scholar
  17. 17.
    T. Pope, et al., “Uncooled detector, optics, and camera development for THz imaging,” Proc. SPIE 7311, 73110L-1 - 73110L-9, 2009.CrossRefGoogle Scholar
  18. 18.
    N. Blanchard, et al., “Catadioptric optics for high-resolution terahertz imager,” Proc. SPIE 8363, 83630B-1- 83630B-7, 2012.CrossRefGoogle Scholar
  19. 19.
    A. J. Gatesman, et al., “An anti-reflection coating for silicon optics at terahertz frequencies” IEEE microwave and guided wave letters 10 (7), 264–266, 2000.CrossRefGoogle Scholar
  20. 20.
    A. Bergeron, et al., “Components, concepts and technologies for useful video rate THz imaging”, Proc. of SPIE, Vol. 8544, 85440C, 2012.CrossRefGoogle Scholar
  21. 21.
    M. Bolduc et al., “Noise-equivalent power characterization of an uncooled microbolometer-based THz imaging camera”, Proc. SPIE, vol. 8023, pp. 80230C-1-80230C-10, 2011.Google Scholar
  22. 22.
    N. Oda, et al., “Microbolometer terahertz focal plane array and camera with improved sensitivity at 0.5 – 0.6 THz”, Proc. of 39th International Conference on Infrared, Millimeter, and Terahertz waves, 2014.Google Scholar
  23. 23.
  24. 24.
    Spectral Calculator Website: http://www.spectralcalc.com/info/about.php
  25. 25.
    L.E. Marchese, et al., “Case study of concealed weapons detection at stand-off distances using a compact, large field-of-view THz camera”, Proc. of SPIE, Vol. 9083, 9032G, 2014.Google Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Denis Dufour
    • 1
  • Linda Marchese
    • 1
  • Marc Terroux
    • 1
  • Hassane Oulachgar
    • 1
  • Francis Généreux
    • 1
  • Michel Doucet
    • 1
  • Luc Mercier
    • 1
  • Bruno Tremblay
    • 1
  • Christine Alain
    • 1
  • Patrick Beaupré
    • 1
  • Nathalie Blanchard
    • 1
  • Martin Bolduc
    • 1
  • Claude Chevalier
    • 1
  • Dominic D’Amato
    • 1
  • Yan Desroches
    • 1
  • François Duchesne
    • 1
  • Lucie Gagnon
    • 1
  • Samir Ilias
    • 1
  • Hubert Jerominek
    • 1
  • François Lagacé
    • 1
  • Julie Lambert
    • 1
  • Frédéric Lamontagne
    • 1
  • Loïc Le Noc
    • 1
  • Anne Martel
    • 1
  • Ovidiu Pancrati
    • 1
  • Jacques-Edmond Paultre
    • 1
  • Tim Pope
    • 1
  • Francis Provençal
    • 1
  • Patrice Topart
    • 1
  • Carl Vachon
    • 1
  • Sonia Verreault
    • 1
  • Alain Bergeron
    • 1
  1. 1.Institut National d’Optique (INO)QuébecCanada

Personalised recommendations