Advertisement

Development of the Multifrequency Gyrotron FU CW GV with Gaussian Beam Output

  • Yoshinori Tatematsu
  • Yuusuke Yamaguchi
  • Ryoichi Ichioka
  • Masaki Kotera
  • Teruo Saito
  • Toshitaka Idehara
Article

Abstract

Gyrotron FU CW GV has been developed as a multifrequency gyrotron for operation over the frequency range from 162 to 265 GHz at frequencies separated by steps of approximately 10 GHz. The oscillation modes were selected; the radii of the caustic surfaces for the electromagnetic waves of the modes had similar values in the waveguide, and it was therefore expected that these modes would be converted into Gaussian beams by a mode converter. In reality, more than ten modes oscillated and the Gaussian-like beams were radiated. A double-disk window with variable spacing maintains the transmittance through the window at a high level over a wide range of frequencies. Using this window, output powers of more than 1 kW were observed for almost all the expected modes.

Keywords

Gyrotron Multifrequency operation Gaussian beam Mode converter Double-disk window High-power radiation source 

Notes

Acknowledgments

This work was partly supported by a special fund for research projects from the Ministry of Education, Culture, Sports, Science and Technology of Japan and by JSPS KAKENHI Grant Number 25420327.

References

  1. 1.
    T. Idehara, I. Ogawa, S. Mitsudo, M. Pereyaslaverts, N. Nishida, K. Yoshida, IEEE Trans. Plasma Sci. 27, 340 (1999).CrossRefGoogle Scholar
  2. 2.
    T. Saito, T. Nakano, H. Hoshizuki, K. Sakai, Y. Tatematsu, S. Mitsudo, I. Ogawa, T. Idehara, V. E. Zapevalov, Int. J. Infrared Milli. Waves 28, 1063 (2007).CrossRefGoogle Scholar
  3. 3.
    V. Bratman, M. Glyavin, T. Idehara, Y. Kalynov, A. Luchinin, V. Manuilov, S. Mitsudo, I. Ogawa, T. Saito, Y. Tatematsu, V. Zapevalov, IEEE Trans. Plasma Sci. 37, 36 (2009).CrossRefGoogle Scholar
  4. 4.
    T. Idehara, S.P. Sabchevski, J. Infrared Milli. Terahz. Waves 33, 667 (2012).CrossRefGoogle Scholar
  5. 5.
    Y. Tatematsu, Y. Yamaguchi, T. Idehara, T. Ozeki, R. Ikeda, T. Kanemaki, I. Ogawa, T. Saito, J. Infrared Milli. Terahz Waves 33, 292 (2012).CrossRefGoogle Scholar
  6. 6.
    Y. Tatematsu, Y. Yamaguchi, T. Idehara, T. Kawase, R. Ichioka, I. Ogawa, T. Saito, T. Fujiwara, J. Infrared Milli. Terahz Waves 35, 169 (2014).CrossRefGoogle Scholar
  7. 7.
    Y. Tatematsu, Y. Yamaguchi, T. Idehara, T. Kawase, I. Ogawa, T. Saito, T. Fujiwara, J. Infrared Milli. Terahz Waves 35, 517 (2014).CrossRefGoogle Scholar
  8. 8.
    Y. Tatematsu, Y. Yamaguchi, T. Kawase, R. Ichioka, I. Ogawa, T. Saito, T. Idehara, Phys. Plasmas 21, 083113 (2014).CrossRefGoogle Scholar
  9. 9.
    T. Idehara, Y. Tatematsu, Y. Yamaguchi, E. M. Khutoryan, A. N. Kuleshov, K. Ueda, Y. Matsuki, T. Fujiwara, J. Infrared Milli. Terahz Waves 36, in press (2015). (doi  10.1007/s10762-015-0150-z).
  10. 10.
    Y. Matsuki, K. Ueda, T. Idehara, R. Ikeda, K. Kosuge, I. Ogawa, S. Nakamura, M. Toda, T. Anai, T. Fujiwara, J. Infrared Milli. Terahz Waves 33, 745 (2012).CrossRefGoogle Scholar
  11. 11.
    F. Horii, T. Idehara, Y. Fujii, I. Ogawa, A. Horii, G. Entzminger, F. D. Doty, J. Infrared Milli. Terahz Waves 33, 756 (2012).CrossRefGoogle Scholar
  12. 12.
    T. Yamazaki, A. Miyazaki, T. Suehara, T. Namba, S. Asai, T. Kobayashi, H. Saito, I. Ogawa, T. Idehara, S. Sabchevski, Phys. Rev. Lett. 108, 253401 (2012).CrossRefGoogle Scholar
  13. 13.
    A. Miyazaki, T. Yamazaki, T. Suehara, T. Namba, S. Asai, T. Kobayashi, H. Saito, T. Idehara, I. Ogawa, Y. Tatematsu, J. Infrared Milli. Terahz. Waves, 35, 91 (2014).CrossRefGoogle Scholar
  14. 14.
    A. Miyazaki, T. Yamazaki, T. Suehara, T. Namba, S. Asai, T. Kobayashi, H. Saito, Y. Tatematsu, I. Ogawa, T. Idehara, Prog. Theor. Exp. Phys. 2015, 011C01 (2015).Google Scholar
  15. 15.
    S. Mitsudo, S. Inagaki, I. N. Sudiana, K. Kuwayama, J. Adv. Mat. Res. 789, 279 (2013).Google Scholar
  16. 16.
    I. N. Sudiana, R. Ito, S. Inagaki, K. Kuwayama, K. Sako, S. Mitsudo, J. Infrared Milli. Terahz Waves 34, 627 (2013).CrossRefGoogle Scholar
  17. 17.
    K. E. Kreischer, R. J. Temkin, Phys. Rev. Lett. 59, 547 (1987).CrossRefGoogle Scholar
  18. 18.
    K. D. Hong, G. F. Brand, T. Idehara, J. Appl. Phys. 74 5250 (1993)CrossRefGoogle Scholar
  19. 19.
    O. Prinz, A. Arnold, G. Gantenbein, Y.-H Liu, M. Thumm, D. Wagner, IEEE Trans. Electron Devices 56, 828 (2009).Google Scholar
  20. 20.
    R. J. Temkin, Terahertz Sci. Tech. 7, 1 (2014).Google Scholar
  21. 21.
    X. Yang, D. Eagner, B. Piosezyk, K. Koppenberg, E. Borie, R. Heidinger, F. Leuterer, G. Dammertz, M. Thumm, Int. J. Infrared Milli. Waves 24, 619 (2003).CrossRefGoogle Scholar
  22. 22.
    P. F. Goldsmith, Quasioptical Systems, Gaussian Beam Quasioptical Propagation and Applications, (IEEE Press 1998) pp.266-280.Google Scholar
  23. 23.
    A. Möbius and M. Thumm, Gyrotron Oscillators, Their Principles and Practice, ed. by C. J. Edgcombe (Taylor & Francis, London, 1993) pp. 179-222.Google Scholar
  24. 24.
    M. V. Kartikeyan, E. Borie, M. K. A. Thumm, Gyrotrons, High-Power Microwave and Millimeter Wave Technology (Springer, Berlin Heidelberg, 2004) pp.127-146.Google Scholar
  25. 25.
    Y. Tatematsu, T. Saito, J. Jpn. Soc. Infrared Sci. Technol. 23, 93 (2013) (in Japanese).Google Scholar
  26. 26.
    Y. Yamaguchi, Y. Tatematsu, T. Saito, R. Ikeda, I. Ogawa, T. Idehara, in “Extended abstracts of 38th IRMMW-THz” (2013) Mo P1-54.Google Scholar
  27. 27.
    M. Thumm, State-of-the-art of high power gyro-devices and free electron masers, Update 2010, KIT Scientific Report 7575, KIT Scientific Publication, Karlsruhe, Germany, 2011.Google Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Yoshinori Tatematsu
    • 1
  • Yuusuke Yamaguchi
    • 1
  • Ryoichi Ichioka
    • 1
  • Masaki Kotera
    • 1
  • Teruo Saito
    • 1
  • Toshitaka Idehara
    • 1
  1. 1.Research Center for Development of Far-Infrared RegionUniversity of FukuiFukuiJapan

Personalised recommendations