Measurement of Refractive Index and Absorption Coefficient of Congruent and Stoichiometric Lithium Niobate in the Terahertz Range

  • Márta Unferdorben
  • Zsuzsanna Szaller
  • Ivett Hajdara
  • János Hebling
  • László Pálfalvi


Time domain THz spectroscopy measurements were performed on a series of undoped and Mg-doped congruent lithium niobate crystals with 1.2, 6.1, and 8.4 mol% Mg concentrations and on undoped and Mg-doped stoichiometric lithium niobate crystals with 0.7, 1.5, and 4.2 mol% Mg concentrations with polarization parallel (extraordinary) and perpendicular (ordinary) to the z axis of the crystal at 300 K. The absorption coefficient and refractive index spectra were determined in the THz frequency range from 0.25 to ~2.5 THz. In the case of congruent samples for both polarizations, both the refractive index and the absorption coefficient have minimal values for compositions close to the photorefractive threshold. In the case of stoichiometric samples, similar tendencies close to the photorefractive threshold at lower Mg concentration were observed but only for extraordinary polarization, while for ordinary polarization the measured values, especially for the absorption coefficient, were only weakly dependent on the Mg content.


Congruent lithium niobate Stoichiometric lithium niobate Terahertz frequency range Refractive index Absorption coefficient Time domain terahertz spectroscopy 



Financial support from the Hungarian Scientific Research Fund under the grant number K 83390 and SROP-4.2.2.A-11/1/KONV-2012-0065 is kindly acknowledged.

Conflict of Interest

The authors declare that they have no conflict of interest.


  1. 1.
    J. Hebling, K.-L. Yeh, M. C. Hoffmann, B. Bartal, and K. A. Nelson, J. Opt. Soc. Am. B 25, B6 (2008)CrossRefGoogle Scholar
  2. 2.
    J. A. Fülöp, Z. Ollmann, Cs. Lombosi, C. Skrobol, S. Klingebiel, L. Pálfalvi, F. Krausz, S. Karsch, J. Hebling, Optics Express 22, 20155 (2014)CrossRefGoogle Scholar
  3. 3.
    K.-E. Peiponen, A. Zeitler, M. Kuwata-Gonokami (eds.), Terahertz Spectroscopy and Imaging, Springer Series in Optical Sciences 171 (Springer, Berlin Heidelberg 2013)Google Scholar
  4. 4.
    Y. Furukawa, K. Kitamura, S. Takekawa, K. Niwa, H. Hatano, Opt. Lett. 23, 1892 (1998)CrossRefGoogle Scholar
  5. 5.
    K. Polgár, L. Kovács, I. Földvári, I. Cravero, Solid State Comm. 59, 375 (1986)CrossRefGoogle Scholar
  6. 6.
    D. A. Bryan, R. Gerson, H. E. Tomaschke, Appl. Phys. Lett. 44, 847 (1984)CrossRefGoogle Scholar
  7. 7.
    Y. Furukawa, K. Kitamura, S. Takakawa, A. Miyamoto, M. Terao, N. Suda, Appl. Phys. Lett. 77, 2494 (2000)CrossRefGoogle Scholar
  8. 8.
    T. R. Volk, N. M. Rubinina, V. I. Pryalkin, V. Krasnikov, V. V. Volkov, Ferroelectrics 109, 345 (1990)CrossRefGoogle Scholar
  9. 9.
    L. Pálfalvi, J. Hebling, G. Almási, Á. Péter, K. Polgár, K. Lengyel, R. Szipőcs, J. Appl. Phys. 95, 902 (2004)CrossRefGoogle Scholar
  10. 10.
    M Aillerie, P Bourson, M Mostefa, F Abdi and M D Fontana, Journal of Physics: Conference Series 416, 012002 (2013)Google Scholar
  11. 11.
    J. A. Fülöp, L. Pálfalvi, M. C. Hoffmann, J. Hebling, Optics Express 19, 15090 (2011)CrossRefGoogle Scholar
  12. 12.
    L. Pálfalvi, J. Hebling, J. Kuhl, Á. Péter, K. Polgár, J. Appl. Phys. 97, 123505 (2005)CrossRefGoogle Scholar
  13. 13.
    P. U. Jepsen and B. M. Fischer, Opt. Lett. 30, 29 (2005)CrossRefGoogle Scholar
  14. 14.
    U. T. Schwarz and M. Maier Phys. Rev. B 53, 5074 (1996)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Márta Unferdorben
    • 1
  • Zsuzsanna Szaller
    • 2
  • Ivett Hajdara
    • 2
  • János Hebling
    • 1
    • 3
  • László Pálfalvi
    • 1
  1. 1.Institute of PhysicsUniversity of PécsPécsHungary
  2. 2.Wigner Research Centre for PhysicsHungarian Academy of SciencesBudapestHungary
  3. 3.MTA-PTE High-Field Terahertz Research GroupPécsHungary

Personalised recommendations