Advertisement

Low temperature grown photoconductive antennas for pulsed 1060 nm excitation: Influence of excess energy on the electron relaxation

  • R. J. B. DietzEmail author
  • A. Brahm
  • A. Velauthapillai
  • A. Wilms
  • C. Lammers
  • B. Globisch
  • M. Koch
  • G. Notni
  • A. Tünnermann
  • T. Göbel
  • M. Schell
Article

Abstract

We investigate properties of MBE grown photoconductive terahertz (THz) antennas based on the InGaAs/InAlAs/InP material system aimed for an excitation wavelength of approx. 1060 nm. Therefore, we analyze several different approaches concerning growth parameters, layer and material compositions as well as doping. The carrier dynamics are probed via transient white-light pump-probe spectroscopy as well as THz Time Domain Spectroscopy (TDS) measurements. We find that the electron capture probability is reduced for higher electron energies. By adjusting the material band gap this can be resolved and lifetimes of 1.3 ps are obtained. These short lifetimes enable the detection of THz TDS spectra with a bandwidth exceeding 4 THz.

Keywords

Photoconductor Low Temperature Growth Terahertz Time Domain Spectroscopy Transient White Light Spectroscopy 

References

  1. 1.
    D. H. Auston, K. P. Cheung, and P. R. Smith, “Picosecond photoconducting Hertzian dipoles,” Appl. Phys. Lett., vol. 45, no. 3, p. 284, 1984.CrossRefGoogle Scholar
  2. 2.
    F. W. Smith, H. Q. Le, V. Diadiuk, M. A. Hollis, A. R. Calawa, S. Gupta, M. Frankel, D. R. Dykaar, G. A. Mourou, and T. Y. Hsiang, “Picosecond GaAs-based photoconductive optoelectronic detectors,” Appl. Phys. Lett., vol. 54, no. 10, p. 890, 1989.CrossRefGoogle Scholar
  3. 3.
    J. Sigmund, C. Sydlo, H. L. Hartnagel, N. Benker, H. Fuess, F. Rutz, T. Kleine-Ostmann, and M. Koch, “Structure investigation of low-temperature-grown GaAsSb, a material for photoconductive terahertz antennas,” Appl. Phys. Lett., vol. 87, no. 25, p. 252103, 2005.CrossRefGoogle Scholar
  4. 4.
    J. Mangeney, N. Chimot, L. Meignien, N. Zerounian, P. Crozat, K. Blary, J. F. Lampin, and P. Mounaix, “Emission characteristics of ion-irradiated In0.53Ga0.47As based photoconductive antennas excited at 1.55 μm.,” Opt. Express, vol. 15, no. 14, pp. 8943–50, Jul. 2007.CrossRefGoogle Scholar
  5. 5.
    M. Suzuki and M. Tonouchi, “Fe-implanted InGaAs terahertz emitters for 1.56 μm wavelength excitation,” Appl. Phys. Lett., vol. 86, no. 5, p. 051104, 2005.CrossRefGoogle Scholar
  6. 6.
    M. Suzuki and M. Tonouchi, “Fe-implanted InGaAs photoconductive terahertz detectors triggered by 1.56 μm femtosecond optical pulses,” Appl. Phys. Lett., vol. 86, no. 16, p. 163504, 2005.CrossRefGoogle Scholar
  7. 7.
    A. Schwagmann, Z.-Y. Zhao, F. Ospald, H. Lu, D. C. Driscoll, M. P. Hanson, A. C. Gossard, and J. H. Smet, “Terahertz emission characteristics of ErAs:InGaAs-based photoconductive antennas excited at 1.55 μm,” Appl. Phys. Lett., vol. 96, no. 14, p. 141108, 2010.CrossRefGoogle Scholar
  8. 8.
    O. Hatem, J. Cunningham, E. H. Linfield, C. D. Wood, A. G. Davies, P. J. Cannard, M. J. Robertson, and D. G. Moodie, “Terahertz-frequency photoconductive detectors fabricated from metal-organic chemical vapor deposition-grown Fe-doped InGaAs,” Appl. Phys. Lett., vol. 98, no. 12, p. 121107, 2011.CrossRefGoogle Scholar
  9. 9.
    B. Sartorius, H. Roehle, H. Künzel, J. Böttcher, M. Schlak, D. Stanze, H. Venghaus, and M. Schell, “All-fiber terahertz time-domain spectrometer operating at 1.5 μm telecom wavelengths,” Opt. Express, vol. 16, no. 13, pp. 9565–9570, 2008.CrossRefGoogle Scholar
  10. 10.
    L. Xu, X.-C. Zhang, and D. H. Auston, “Terahertz beam generation by femtosecond optical pulses in electro-optic materials,” Appl. Phys. Lett., vol. 61, no. 15, p. 1784, 1992.CrossRefGoogle Scholar
  11. 11.
    Q. Wu and X.-C. Zhang, “Free-space electro-optic sampling of terahertz beams,” Appl. Phys. Lett., vol. 67, no. 24, p. 3523, 1995.CrossRefGoogle Scholar
  12. 12.
    P. Jepsen, C. Winnewisser, M. Schall, V. Schyja, S. R. Keiding, and H. Helm, “Detection of THz pulses by phase retardation in lithium tantalate,” Phys. Rev. E, vol. 53, no. 4, pp. 3052–3054, 1996.CrossRefGoogle Scholar
  13. 13.
    R. H. M. Groeneveld and D. Grischkowsky, “Picosecond time-resolved far-infrared experiments on carriers and excitons in GaAs-AlGaAs multiple quantum wells,” J. Opt. Soc. Am. B, vol. 11, no. 12, p. 2502, Dec. 1994.CrossRefGoogle Scholar
  14. 14.
    R. Kaindl, M. Carnahan, D. Hägele, R. Lövenich, and D. S. Chemla, “Ultrafast terahertz probes of transient conducting and insulating phases in an electron–hole gas,” Nature, vol. 423, p. 734, 2003.CrossRefGoogle Scholar
  15. 15.
    S. Leinß, T. Kampfrath, K. v. Volkmann, M. Wolf, J. Steiner, M. Kira, S. Koch, A. Leitenstorfer, and R. Huber, “Terahertz Coherent Control of Optically Dark Paraexcitons in Cu2O,” Phys. Rev. Lett., vol. 101, no. 24, p. 246401, Dec. 2008.Google Scholar
  16. 16.
    D. Golde, M. Wagner, D. Stehr, H. Schneider, M. Helm, A. M. Andrews, T. Roch, G. Strasser, M. Kira, and S. W. Koch, “Fano Signatures in the Intersubband Terahertz Response of Optically Excited Semiconductor Quantum Wells,” Phys. Rev. Lett., vol. 102, p. 127403, 2009.CrossRefGoogle Scholar
  17. 17.
    B. Ewers, N. S. Köster, R. Woscholski, M. Koch, S. Chatterjee, G. Khitrova, H. M. Gibbs, a. C. Klettke, M. Kira, and S. W. Koch, “Ionization of coherent excitons by strong terahertz fields,” Phys. Rev. B, vol. 85, no. 7, p. 075307, Feb. 2012.Google Scholar
  18. 18.
    T. M. Korter and D. F. Plusquellic, “Continuous-wave terahertz spectroscopy of biotin: vibrational anharmonicity in the far-infrared,” Chem. Phys. Lett., vol. 385, no. 1–2, pp. 45–51, Feb. 2004.CrossRefGoogle Scholar
  19. 19.
    V. Křesálek and T. Gavenda, “Using Terahertz Spectroscopy for Observing the Kinetics of Recrystallisation of Polybutene-1,” J. Infrared, Millimeter, Terahertz Waves, vol. 34, no. 2, pp. 187–193, Jan. 2013.CrossRefGoogle Scholar
  20. 20.
    W. Qiao, K. Yang, A. Thoma, and T. Dekorsy, “Dielectric Relaxation of HCl and NaCl Solutions Investigated by Terahertz Time-Domain Spectroscopy,” J. Infrared, Millimeter, Terahertz Waves, vol. 33, no. 10, pp. 1029–1038, Jun. 2012.CrossRefGoogle Scholar
  21. 21.
    H. Zhang, K. Siegrist, D. F. Plusquellic, and S. K. Gregurick, “Terahertz spectra and normal mode analysis of the crystalline VA class dipeptide nanotubes.,” J. Am. Chem. Soc., vol. 130, no. 52, pp. 17846–57, Dec. 2008.CrossRefGoogle Scholar
  22. 22.
    C.-C. Chen, D.-J. Lee, T. Pollock, and J. F. Whitaker, “Pulsed-terahertz reflectometry for health monitoring of ceramic thermal barrier coatings.,” Opt. Express, vol. 18, no. 4, pp. 3477–86, Feb. 2010.CrossRefGoogle Scholar
  23. 23.
    W. L. Chan, J. Deibel, and D. M. Mittleman, “Imaging with terahertz radiation,” Reports Prog. Phys., vol. 70, no. 8, pp. 1325–1379, Aug. 2007.CrossRefGoogle Scholar
  24. 24.
    C. Jansen, S. Wietzke, O. Peters, M. Scheller, N. Vieweg, M. Salhi, N. Krumbholz, C. Jördens, T. Hochrein, and M. Koch, “Terahertz imaging: applications and perspectives.,” Appl. Opt., vol. 49, no. 19, pp. E48–57, Jul. 2010.CrossRefGoogle Scholar
  25. 25.
    J. F. Federici, “Review of Moisture and Liquid Detection and Mapping using Terahertz Imaging,” J. Infrared, Millimeter, Terahertz Waves, vol. 33, no. 2, pp. 97–126, Jan. 2012.CrossRefMathSciNetGoogle Scholar
  26. 26.
    D. Banerjee, W. von Spiegel, M. D. Thomson, S. Schabel, and H. G. Roskos, “Diagnosing water content in paper by terahertz radiation,” Opt. Express, vol. 16, no. 12, pp. 3003–3006, 2008.CrossRefGoogle Scholar
  27. 27.
    R. J. B. Dietz, M. Gerhard, D. Stanze, M. Koch, B. Sartorius, and M. Schell, “THz generation at 1.55 μm excitation : six-fold increase in THz conversion efficiency by separated photoconductive and trapping regions,” Opt. Express, vol. 19, no. 27, pp. 122–126, 2011.CrossRefGoogle Scholar
  28. 28.
    R. J. B. Dietz, B. Globisch, M. Gerhard, A. Velauthapillai, D. Stanze, H. Roehle, M. Koch, T. Göbel, and M. Schell, “64 μW pulsed terahertz emission from growth optimized InGaAs/InAlAs heterostructures with separated photoconductive and trapping regions,” Appl. Phys. Lett., vol. 103, no. 6, p. 061103, 2013.CrossRefGoogle Scholar
  29. 29.
    B. Globisch, R. J. B. Dietz, D. Stanze, T. Göbel, and M. Schell, “Carrier dynamics in Beryllium doped low-temperature-grown InGaAs/InAlAs,” Appl. Phys. Lett., vol. 104, no. 17, p. 172103, Apr. 2014.CrossRefGoogle Scholar
  30. 30.
    R. J. B. Dietz, B. Globisch, H. Roehle, D. Stanze, T. Göbel, and M. Schell, “Influence and adjustment of carrier lifetimes in InGaAs/InAlAs photoconductive pulsed terahertz detectors : 6 THz bandwidth and 90dB dynamic range,” Opt. Express, vol. 22, no. 16, pp. 615–623, 2014.CrossRefGoogle Scholar
  31. 31.
    A. Brahm, A. Wilms, R. J. B. Dietz, T. Göbel, M. Schell, G. Notni, and A. Tünnermann, “Multichannel terahertz time-domain spectroscopy system at 1030 nm excitation wavelength,” Opt. Express, vol. 22, no. 11, p. 12982, May 2014.CrossRefGoogle Scholar
  32. 32.
    A. Bic, K. Bertulis, and A. Krotkus, “Optoelectronic terahertz radiation system based on femtosecond 1 μm laser pulses and GaBiAs detector,” Electron. Lett., vol. 44, no. 19, 2008.Google Scholar
  33. 33.
    V. Pačebutas, a. Bičiūnas, S. Balakauskas, a. Krotkus, G. Andriukaitis, D. Lorenc, a. Pugžlys, and a. Baltuška, “Terahertz time-domain-spectroscopy system based on femtosecond Yb:fiber laser and GaBiAs photoconducting components,” Appl. Phys. Lett., vol. 97, no. 3, p. 031111, 2010.Google Scholar
  34. 34.
    I. Hinkov, G. Harzendorf, S. Kluska, B. Hinkov, K. Kamaruzaman, R. Beigang, J. Heinrich, S. Hoefling, and A. Forchel, “Generation of terahertz pulsed radiation from photoconductive emitters using 1060 nm laser excitation,” in 15th International Conference on Terahertz Electronics. IRMMW-THz. Joint 32nd International Conference on, 2007, pp. 1–2.Google Scholar
  35. 35.
    R. J. B. Dietz, R. Wilk, B. Globisch, H. Roehle, D. Stanze, S. Ullrich, S. Schumann, N. Born, M. Koch, B. Sartorius, and M. Schell, “Low Temperature Grown Be-doped InGaAs/InAlAs Photoconductive Antennas Excited at 1030 nm,” J. Infrared, Millimeter, Terahertz Waves, vol. 34, no. 3–4, pp. 231–237, Mar. 2013.CrossRefGoogle Scholar
  36. 36.
    B. Grandidier, H. Chen, R. M. Feenstra, D. T. McInturff, P. W. Juodawlkis, and S. E. Ralph, “Scanning tunneling microscopy and spectroscopy of arsenic antisites in low temperature grown InGaAs,” Appl. Phys. Lett., vol. 74, no. 10, p. 1439, 1999.CrossRefGoogle Scholar
  37. 37.
    H. Künzel, J. Böttcher, R. Gibis, H. Hoenow, and C. Heedt, “Low-temperature MBE of AlGaInAs lattice-matched to InP,” J. Cryst. Growth, vol. 127, no. 1–4, pp. 519–522, Feb. 1993.CrossRefGoogle Scholar
  38. 38.
    H. Künzel, J. Böttcher, R. Gibis, and G. Urmann, “Material properties of Ga0.47In0.53As grown on InP by low-temperature molecular beam epitaxy,” Appl. Phys. Lett., vol. 61, no. 11, p. 1347, 1992.CrossRefGoogle Scholar
  39. 39.
    A. Mircea, A. Mitonneau, J. Hallais, and M. Jaros, “Study of the main electron trap in Ga1-xInxAs alloys,” Phys. Rev. B, vol. 16, no. 8, pp. 3665–3675, Oct. 1977.CrossRefGoogle Scholar
  40. 40.
    A. Irvine and D. Palmer, “First observation of the EL2 lattice defect in indium gallium arsenide grown by molecular-beam epitaxy,” Phys. Rev. Lett., vol. 68, no. 14, pp. 2168–2171, 1992.CrossRefGoogle Scholar
  41. 41.
    F. Urbach, “The long-wavelength edge of photographic sensitivity and of the electronic absorption of solids,” Phys. Rev., vol. 92, p. 1324, 1953.CrossRefGoogle Scholar
  42. 42.
    S. E. Esipov and Y. B. Levinson, “The temperature and energy distribution of photoexcited hot electrons,” Adv. Phys., vol. 36, no. 3, pp. 331–383, Jan. 1987.CrossRefGoogle Scholar
  43. 43.
    J. Kash, J. Tsang, and J. Hvam, “Subpicosecond time-resolved Raman spectroscopy of LO phonons in GaAs,” Phys. Rev. Lett., vol. 54, no. 19, pp. 2151–2154, 1985.CrossRefGoogle Scholar
  44. 44.
    W. Pötz and P. Kocevar, Hot Carriers in Semiconductor Nanostructures. Elsevier, 1992, pp. 87–120.Google Scholar
  45. 45.
    R. Pässler, “Nonradiative multiphonon capture of thermal and hot carriers by deep traps in semiconductors for the alternative regimes of small and large lattice relaxation,” Czechoslov. J. Phys., vol. 34, pp. 377–401, 1984.CrossRefGoogle Scholar
  46. 46.
    H. Goto, Y. Adachi, and T. Ikoma, “Carrier capture by multiphonon emission at extrinsic deep centers induced by self-trapping in GaAs,” J. Appl. Phys., vol. 54, no. 4, p. 1909, 1983.CrossRefGoogle Scholar
  47. 47.
    H. Roehle, R. J. B. Dietz, H. J. Hensel, J. Böttcher, H. Künzel, D. Stanze, M. Schell, and B. Sartorius, “Next generation 1.5 μm terahertz antennas: mesa-structuring of InGaAs/InAlAs photoconductive layers.,” Opt. Express, vol. 18, no. 3, pp. 2296–301, Feb. 2010.CrossRefGoogle Scholar
  48. 48.
    L. Duvillaret, F. Garet, J.-F. Roux, and J.-L. Coutaz, “Analytical modeling and optimization of terahertz time-domain spectroscopy experiments, using photoswitches as antennas,” IEEE J. Sel. Top. Quantum Electron., vol. 7, no. 4, pp. 615–623, 2001.CrossRefGoogle Scholar
  49. 49.
    E. Castro-Camus, L. Fu, J. Lloyd-Hughes, H. H. Tan, C. Jagadish, and M. B. Johnston, “Photoconductive response correction for detectors of terahertz radiation,” J. Appl. Phys., vol. 104, no. 5, p. 053113, 2008.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • R. J. B. Dietz
    • 1
    Email author
  • A. Brahm
    • 2
    • 3
  • A. Velauthapillai
    • 4
  • A. Wilms
    • 2
  • C. Lammers
    • 4
  • B. Globisch
    • 1
  • M. Koch
    • 4
  • G. Notni
    • 2
  • A. Tünnermann
    • 2
    • 3
  • T. Göbel
    • 1
  • M. Schell
    • 1
  1. 1.Fraunhofer Institute for TelecommunicationsHeinrich-Hertz-InstituteBerlinGermany
  2. 2.Fraunhofer Institute for Applied Optics and Precision EngineeringJenaGermany
  3. 3.Institute of Applied Physics, Abbe Center of PhotonicsFriedrich-Schiller UniversityJenaGermany
  4. 4.Department of PhysicsPhilipps-Universität MarburgMarburgGermany

Personalised recommendations