Wavelet Based Identification of Substances in Terahertz Tomography Measurements

  • Anika BrahmEmail author
  • Maryna Tymoshchuk
  • Felix Wichmann
  • Sebastian Merx
  • Gunther Notni
  • Andreas Tünnermann


In comparison to the X-ray computed tomography Terahertz technique significantly enhances the amount of the information acquired during the sample measurement. Not only amplitude, but also phase, time and spectral characteristics can be determined in THz time-domain spectroscopy. Thus, Terahertz tomography allows localization and identification of substances within the objects due to the characteristic fingerprints in this frequency range. Certainly, an appropriate data processing and comparison algorithms are crucial for the accurate identification of the substances in the measured sample. Therefore, we present a new wavelet-based identification method which is suitable even for the substances with broad absorption curves and small or no absorption peaks. The performance of this algorithm was evaluated with the help of a tomographic sample filled with four substances, which were previously characterized for the external database. The continuous wavelet transform was applied to every data cell of the tomographic measurement and compared to the database. Received sinograms were reconstructed into images which depict estimated similarity between the measured and database substances. Furthermore, we suggest a method for the reduction of spectral data after the continuous wavelet transform. This method is based on the extraction of the distinctive features in the form of ridge lines.


Terahertz tomography Spectral identification Time-domain spectroscopy Continuous wavelet transform Correlation Ridge lines 


  1. 1.
    D. Mittleman, Sensing with Terahertz Radiation (Springer, Berlin-Heidelberg, 2003)CrossRefGoogle Scholar
  2. 2.
    B. Ferguson, S. Wang, D. Gray, D. Abbot, X. C. Zhang, Opt. Lett. 27, 1312-1314 (2002)CrossRefGoogle Scholar
  3. 3.
    M. C. Kemp, P. F. Taday, B. E. Cole, J. A. Cluff, A. J. Fitzgerald, W. R. Tribe, Proc. SPIE 5070, 44-52 (2003)CrossRefGoogle Scholar
  4. 4.
    C. Gerth, A. Brahm, V. Reichmann, G. Notni, in Proc. of 37th Intern.Conf. IRMMW-THz (2012) doi:  10.1109/IRMMW-THz.2012.6380095
  5. 5.
    Y. Watanabe, K. Kawase, T. Ikari, H. Ito, Y. Ishikawa, H. Minamide, Opt. Commun. 234, 125-129 (2004)CrossRefGoogle Scholar
  6. 6.
    A. G. Davies, A. D. Burnett, W. Fan, E. H. Linfield, J. E. Cunningham, Materials Today 11, 18-26 (2008)CrossRefGoogle Scholar
  7. 7.
    K. Kawase, Y. Ogawa, Y. Watanabe, Hiroyuki Inoue, Opt. Express 11, 2549-2554 (2003)CrossRefGoogle Scholar
  8. 8.
    H. Liu, Y. Chen, X. Zhang, Journal of Pharmaceutical Sciences 96, 927-934 (2007)CrossRefGoogle Scholar
  9. 9.
    A. Brahm, A. Wilms, R. J. B. Dietz, T. Göbel, M. Schell, G. Notni, A. Tünnermann, Opt. Express 22, 12982-12993 (2014)CrossRefGoogle Scholar
  10. 10.
    J. E. Haddad, B. Bousquet, L. Canioni, P. Mounaix, TrAC Trends in Analytical Chemistry 44, 98-105 (2013)CrossRefGoogle Scholar
  11. 11.
    S. Kawata, K. Sasaki, S. Minami, J. Opt. Soc. Am. A 4, 2101-2106 (1987)Google Scholar
  12. 12.
    J. Pei, Y. Hu, W. Xie, in Proc. SPIE Vol. 6787, 67871M-7 (2007)Google Scholar
  13. 13.
    Y. Shen, P. F. Taday, D. A. Newnham, M. C. Kemp, M. Pepper, in Proc. SPIE Vol. 5727, 24-31 (2005)Google Scholar
  14. 14.
    A. Brahm, M. Kunz, S. Riehemann, G. Notni, A. Tünnermann, Appl. Phys. B 100, 151-158 (2010)CrossRefGoogle Scholar
  15. 15.
    P. Du, W. A. Kibbe, S. M. Lin, Bioinformatics 22, 2059-2065 (2006)CrossRefGoogle Scholar
  16. 16.
    A. Brahm, A. Wilms, M. Tymoshchuk, C. Grossmann, G. Notni, A. Tünnermann, Opt. Laser Technol. 62, 49-57 (2014)CrossRefGoogle Scholar
  17. 17.
    A. Brahm, B. Pradarutti, M. Kunz, S. Riehemann, G. Notni, S. Nolte, A. Tünnermann, in Proc. of 34th Intern. Conf. IRMMW-THz (2009) doi:  10.1109/ICIMW.2009.5324635
  18. 18.
    Y. Hua, H. Zhang, IEEE Trans. Microwave Theory Tech. 58, 2064-2070 (2010)CrossRefGoogle Scholar
  19. 19.
    A. C. Kak, M. Slaney, Principles of computerized tomographic imaging (IEEE Press, New York, 1988)zbMATHGoogle Scholar
  20. 20.
    E. Abraham, A. Younus, C. Aguerre, P. Desbarats, P. Mounaix, Opt. Commun. 283, 2050-2055 (2010)CrossRefGoogle Scholar
  21. 21.
    A. Brahm, A. Tünnermann, F. Wichmann, C. Gerth, M. Tymoshchuk, S. Riehemann, G. Notni, Photon. Spectra 45, 40-43 (2011)Google Scholar
  22. 22.
    K. Pearson, “Notes on the history of correlation”, Biometrika 13 (1), 25-45 (1920).CrossRefGoogle Scholar
  23. 23.
    D. P. Radunovic, Wavelets (Springer, Berlin-Heidelberg, Germany, 2009)zbMATHGoogle Scholar
  24. 24.
    MATLAB Wavelet Toolbox, Version 4.7 (R2011a) (The MathWorks Inc., Natick, Massachusetts, 2011)Google Scholar
  25. 25.
    I. Daubechies, Ten lectures on wavelets (SIAM, Philadelphia, 1992)CrossRefzbMATHGoogle Scholar
  26. 26.
    A. Brahm, F. Wichmann, C. Gerth, G. Notni, A. Tünnermann, in Proc. of 38th Intern. Conf. IRMMW-THz (2013), doi:  10.1109/IRMMW-THz.2013.6665834
  27. 27.
    H. Stephani, Automatic Segmentation and Clustering of Spectral Terahertz Data, PhD thesis, TU Kaiserslautern und Johannes Kepler Universität Linz (2012), Accessed 1 July 2014.
  28. 28.
    S. Mukherjee, J. Federici, P. Lopes, M. Cabral, J. Infrared Millim. W. 34, 1-17 (2013).Google Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Anika Brahm
    • 1
    • 2
    Email author
  • Maryna Tymoshchuk
    • 1
  • Felix Wichmann
    • 3
  • Sebastian Merx
    • 1
  • Gunther Notni
    • 1
  • Andreas Tünnermann
    • 1
    • 2
  1. 1.Fraunhofer Institute for Applied Optics and Precision EngineeringJenaGermany
  2. 2.Institute of Applied Physics, Abbe Center of PhotonicsFriedrich-Schiller-UniversityJenaGermany
  3. 3.JenaGermany

Personalised recommendations