A Unified Derivation of the Terahertz Spectra Generated by Photoconductors and Diodes

  • Sascha PreuEmail author


By a convolution approach for the spectra generated by photoconductive and photomixing THz emitters, the intrinsic response of the material can be separated from the spectrum of the optical pulse and that of any attached antenna. The spectrum turns out to be simply a product of the spectra of the individual components and can be calculated analytically. This result has impact on materials design and derivation of the optimum excitation conditions for photoconductors and photodiodes. Spectra of three technologically important devices, namely low-lifetime materials, semi-insulating materials and devices supporting ballistic transport, are calculated. The derived pulse shape is compared to experimental data.


Terahertz generation Photoconductor Photomixer Transient conductance Fourier analysis 



The author acknolwedges LOEWE Sensors Towards Terahertz programme for funding and G.H. Döhler for discussions.


  1. 1.
    E.R. Brown, K.A. McIntosh, K.B. Nichols, C.L. Dennis, Appl. Phys. Lett. 66, 285 (1995).Google Scholar
  2. 2.
    A.S. Pine, R.D. Suenram, E.R. Brown, K.A. McIntosh, J. Mol. Spectroscopy 175, 37 (1996).Google Scholar
  3. 3.
    A. Dreyhaupt, S. Winnerl, T. Dekorsy, M. Helm, Appl. Phys. Lett. 86, 121114 (2005).Google Scholar
  4. 4.
    F. Ospald, D. Maryenko, K. von Klitzing, D.C. Driscoll, M.P. Hanson, H. Lu, A.C. Gossard, J.H. Smet, Appl. Phys. Lett. 92, 131117 (2008).Google Scholar
  5. 5.
    J. Mangeney, P. Crozat, Physique 9, 142 (2008).Google Scholar
  6. 6.
    S. Preu, M. Mittendorff, H. Lu, H.B. Weber, S. Winnerl, A. Gossard, Appl. Phys. Lett. 101, 101105 (2012).Google Scholar
  7. 7.
    M. Beck, H. Schäfer, G. Klatt, J. Demsar, S. Winnerl, M. Helm, T. Dekorsy, Opt. Express 18, 9251 (2010).Google Scholar
  8. 8.
    S. Winnerl, J. Infrared Milli Terahz Waves 33, 431 (2012).Google Scholar
  9. 9.
    M. Xu, M. Mittendorff, R.J.B. Dietz, H. Künzel, B. Sartorius, T. Göbel, H. Schneider, M. Helm, S. Winnerl, Appl. Phys. Lett. 103, 251114 (2013).Google Scholar
  10. 10.
    S. Preu, G.H. Döhler, S. Malzer, L. Wang, A.C. Gossard, J. Appl. Phys. 109, 061301 (2011).Google Scholar
  11. 11.
    A. Eshaghi, M. Shahabadi, L. Chrostowski, J. Opt.Soc. Am. B 29, 813 (2012).Google Scholar
  12. 12.
    H. Ito, F. Nakajima, T. Futura, T. Ishibashi, Semicond. Sci. Technol. 20, 191 (2005).Google Scholar
  13. 13.
    C.C. Renaud, M. Robertson, D. Rogers, R. Firth, P.J. Cannard, R. Moore, A.J. Seeds, Proc. SPIE 6194, 6164C (2006).Google Scholar
  14. 14.
    A. Beck, G. Ducournau, M. Zaknoune, E. Peytavit, T. Alkalin, J.F. Lampin, F. Mollot, F. Hindle, C. Yang, G. Mouret, IEEE IRMMW (2008).Google Scholar
  15. 15.
    T. Göbel, D. Stanze, B. Globisch, R. Dietz, H. Roehle, and M. Schell, Opt. Lett. 38, 4197 (2013).Google Scholar
  16. 16.
    V. Rymanov, A. Stöhr, S. Dülme, and T. Tekin, Optics Express 22, 7550 (2014).Google Scholar
  17. 17.
    S. Preu, F.H. Renner, S. Malzer, G.H. Döhler, L.J. Wang, T.L.J. Wilkinson, E.R. Brown, M. Hanson, A.C. Gossard, Appl. Phys. Lett. 90, 212115 (2007).Google Scholar
  18. 18.
    M. Tani, S. Matsuura, K. Sakai, S.I. Nakashima, Appl. Opt. 36, 7853 (1997).Google Scholar
  19. 19.
    P. Benicewicz, J.P. Roberts, A.J. Taylor, J. Opt. Soc. Am. B 11, 2533 (1994).Google Scholar
  20. 20.
    P.U. Jepsen, R.H. Jacobsen, S. Keiding, J. Opt.Soc. Am. B 13, 2424 (1996).Google Scholar
  21. 21.
    G. Rodriguez, S. Caceres, A.J. Taylor, Opt. Lett. 19, 1994 (1994).Google Scholar
  22. 22.
    Z. Piao, M. Tani, K. Sakai, Jpn. J. Appl. Phys. 39, 96 (2000).Google Scholar
  23. 23.
    K. Edzi, B. Heinen, C. Jördens, N. Vieweg, N. Krumbholz, R. Wilk, M. Mikulics, M. Koch, J. European Optical Society 4, 09001 (2009).Google Scholar
  24. 24.
    M. Ashida, Jpn. J. Appl. Phys. 47, 8221 (2008).Google Scholar
  25. 25.
    P. Jepsen, D.G. Cooke, M. Koch, Laser Phot. 5, 124 (2011).Google Scholar
  26. 26.
    E.R. Brown, Int. J. High Speed Electron. and Systems 13, 497 (2003).Google Scholar
  27. 27.
    H. Roehle, R. Dietz, H. Hensel, J. Bttcher, H. Knzel, D. Stanze, M. Schell, and B. Sartorius, Opt. Express 18, 2296 (2010).Google Scholar
  28. 28.
    J. Bjarnason, T. Chan, A. Lee, E. Brown, D. Driscoll, M. Hanson, A. Gossard, R. Muller, Appl. Phys. Lett. 85, 3983 (2004).Google Scholar
  29. 29.
    C. Berry, M. Jarrahi, J. Infrared Milli Terahz Waves 33, 1182 (2012).Google Scholar
  30. 30.
    C.A. Balanis, Antenna Theory: Analysis and design, 3rd edn. (John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030, USA, 2005).Google Scholar
  31. 31.
    W. Stutzman, G. Thiele, Antenna Theroy and Design, 2nd edn. (John Wiley & Sons, New York, 1998).Google Scholar
  32. 32.
    A. Leitenstorfer, S. Hunsche, J. Shah, M.C. Nuss, W.H. Knox, Phys. Rev. B 61, 16642 (2000).Google Scholar
  33. 33.
    G.H. Döhler, F. Renner, O. Klar, M. Eckardt, A. Schwanhäußer, S. Malzer, D. Driscoll, M. Hanson, A.C. Gossard, G. Loata, T. Löffler, H. Roskos, Semicond. Sci. Technol. 20, 178 (2005).Google Scholar
  34. 34.
    J.L. Hudgins, G.S. Simin, E. Santi, and M.S. Khan, IEEE Trans. Power Electron 18, 907-914 (2003).Google Scholar
  35. 35.
    A. Dreyhaupt, S. Winnerl, M. Helm, T. Dekorsy, Opt. Lett. 31, 1546 (2006).Google Scholar
  36. 36.
    M. Awad, M. Nagel, H. Kurz, J. Herfort, K. Ploog, Appl. Phys. Lett. 91, 181124 (2007).Google Scholar
  37. 37.
    M. Sukhotin, E. Brown, D. Driscoll, M. Hanson, A. Gossard, Appl. Phys. Lett. 83, 3921 (2003).Google Scholar
  38. 38.
    J.T. Darrow, X.-C. Zhang, D.H. Auston , J.D. Morse IEEE J. Quant. Electron. 28, 1607 (1992).Google Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.Terahertz Systems Technology, Department of Electrical Engineering and Information TechnologyTechnical University DarmstadtDarmstadtGermany

Personalised recommendations