InGaAs/GaAsSb/InP terahertz quantum cascade lasers

  • Christoph Deutsch
  • Hermann Detz
  • Tobias Zederbauer
  • Michael Krall
  • Martin Brandstetter
  • Aaron M. Andrews
  • Pavel Klang
  • Werner Schrenk
  • Gottfried Strasser
  • Karl Unterrainer
Article

Abstract

The development of In0.53Ga0.47As/GaAs0.51Sb0.49 terahertz quantum cascade lasers is reviewed, starting with the first demonstration, through growth direction dependent performance issues, to high performance devices. This InP-based material system is an attractive alternative to the almost exclusively used GaAs/AlxGa1-xAs. Devices achieve maximum operating temperatures of 142 K and exhibit broadband lasing over a range of 660 GHz. A special focus has to be put on the growth direction related interface asymmetry for this material system. Symmetric active region designs are an elegant technique to investigate such asymmetries. A significant impact on the device performance is observed and attributed to interface roughness scattering.

Keywords

Quantum cascade lasers Terahertz generation Novel material systems Antimony materials Transport in nanostructures 

References

  1. 1.
    B. S. Williams, Nat. Photonics 1, 517 (2007).CrossRefGoogle Scholar
  2. 2.
    R. Köhler, A. Tredicucci, F. Beltram, H. E. Beere, E. H. Linfield, A. G. Davies, D. A. Ritchie, R. C. Iotti, and F. Rossi, Nature 417, 156 (2002).CrossRefGoogle Scholar
  3. 3.
    B. S. Williams, S. Kumar, Q. Hu and J. Reno, Opt. Express 13, 3331 (2005).CrossRefGoogle Scholar
  4. 4.
    S. Kumar, Q. Hu, and J. L. Reno, Appl. Phys. Lett. 94, 131105 (2009).CrossRefGoogle Scholar
  5. 5.
    S. Fathololoumi, E. Dupont, C. W. I. Chan, Z. R. Wasilewski, S. R. Laframboise, D. Ban, A. Mátyás, C. Jirauschek, Q. Hu, and H. C. Liu, Opt. Express 20, 3866 (2012).CrossRefGoogle Scholar
  6. 6.
    A. Wade, G. Fedorov, D. Smirnov, S. Kumar, B. S. Williams, Q. Hu, Nat. Photonics 3, 41 (2009).CrossRefGoogle Scholar
  7. 7.
    E. A. Zibik, T. Grange, B. A. Carpenter, N. E. Porter, R. Ferreira, G. Bastard, D. Stehr, S. Winnerl, M. Helm, H. Y. Liu, M. S. Skolnick, and L. R. Wilson, Nat. Materials 8, 803 (2009).CrossRefGoogle Scholar
  8. 8.
    V. Liverini, L. Nevou, F. Castellano, A. Bismuto, M. Beck, F. Gramm, and J. Faist, Appl. Phys. Lett. 101, 261113 (2012).CrossRefGoogle Scholar
  9. 9.
    M. I. Amanti, A. Bismuto, M. Beck, L. Isa, K. Kumar, E. Reimhult, and J. Faist, Opt. Express 21, 10917 (2013).CrossRefGoogle Scholar
  10. 10.
    M. Krall, M. Brandstetter, C. Deutsch, H. Detz, T. Zederbauer, A. M. Andrews, W. Schrenk, G. Strasser and K. Unterrainer, Proc. SPIE 8640, 864018 (2013).CrossRefGoogle Scholar
  11. 11.
    T. Grange, arXiv:1301.1258 [cond-mat.mes-hall].Google Scholar
  12. 12.
    Y. Bai, N. Bandyopadhyay, S. Tsao, S. Slivken, and M. Razeghi, Appl. Phys. Lett. 98, 181102 (2011).CrossRefGoogle Scholar
  13. 13.
    P. Liu, A. J. Hoffman, M. D. Escarra, J. K. Franz, J. B. Khurgin, Y. Dikmelik, X. Wang, J.-Y. Fan, and C. F. Gmachl, Nat. Photonics 4, 95 (2010).CrossRefGoogle Scholar
  14. 14.
    C. Sirtori, P. Kruck, S. Barbieri, P. Collot, J. Nagle, M. Beck, J. Faist, and U. Oesterle, Appl. Phys. Lett. 73, 3486 (1998).CrossRefGoogle Scholar
  15. 15.
    E. Benveniste, A. Vasanelli, A. Delteil, J. Devenson, R. Teissier, A. Baranov, A. M. Andrews, G. Strasser, I. Sagnes, and C. Sirtori, Appl. Phys. Lett. 93, 131108 (2008).CrossRefGoogle Scholar
  16. 16.
    M. Fischer, G. Scalari, Ch. Walther, and J. Faist, Journal of Crystal Growth 311, 1939 (2009).Google Scholar
  17. 17.
    L. Ajili, G. Scalari, N. Hoyler, M. Giovannini, and J. Faist, Appl. Phys. Lett. 87, 141107 (2005).CrossRefGoogle Scholar
  18. 18.
    M. Fischer, G. Scalari, K. Celebi, M. Amanti, Ch. Walther, M. Beck, and J. Faist, Appl. Phys. Lett. 97, 221114 (2010).CrossRefGoogle Scholar
  19. 19.
    K. Fujita, M. Yamanishi, S. Furuta, K. Tanaka, T. Edamura, T. Kubis, and G. Klimeck, Opt. Express 20, 20647 (2012).CrossRefGoogle Scholar
  20. 20.
    H. Callebaut, S. Kumar, B. S. Williams, Q. Hu, and J. L. Reno, Appl. Phys. Lett. 84, 645 (2003).CrossRefGoogle Scholar
  21. 21.
    T. Kubis, C. Yeh, P. Vogl, A. Benz, G. Fasching, and C. Deutsch, Phys. Rev. B 79, 195323 (2009)CrossRefGoogle Scholar
  22. 22.
    R. Nelander and A. Wacker, Appl. Phys. Lett. 92, 081102 (2008).CrossRefGoogle Scholar
  23. 23.
    C. Jirauschek and Paolo Lugli, J. Appl. Phys. 105, 123102 (2009).Google Scholar
  24. 24.
    E. Bellotti, K. Driscoll, T. D. Moustakas, and Roberto Paiella, Appl. Phys. Lett. 92, 101112 (2008).Google Scholar
  25. 25.
    L. Lever, A. Valavanis, Z. Ikonić, and R. W. Kelsall, Appl. Phys. Lett. 92, 021121 (2008).CrossRefGoogle Scholar
  26. 26.
    M. Nobile, H. Detz, E. Mujagić, A. M. Andrews, P. Klang, W. Schrenk, and G. Strasser, Appl. Phys. Lett. 95, 041102 (2009).CrossRefGoogle Scholar
  27. 27.
    M. Nobile, P. Klang, E. Mujagić, H. Detz, A. M. Andrews, W. Schrenk, and G. Strasser, Electronics Letters 45, 1031 (2009) .CrossRefGoogle Scholar
  28. 28.
    H. Detz, A. M. Andrews, M. Nobile, P. Klang, E. Mujagić, G. Hesser, W. Schrenk, F. Schäffler, and G. Strasser, J. Vac. Sci. Technol. B. 28 (3), 1071 (2010).CrossRefGoogle Scholar
  29. 29.
    H. Detz, M. Nobile, C. Deutsch, P. Klang, A. M. Andrews, A. Benz, W. Schrenk, K. Unterrainer, and G. Strasser, Journal of Modern Optics 58, 2015 (2011).CrossRefGoogle Scholar
  30. 30.
    C. Deutsch, A. Benz, H. Detz, P. Klang, M. Nobile, A. M. Andrews, W. Schrenk, T. Kubis, P. Vogl, G. Strasser, and K. Unterrainer, Appl. Phys. Lett. 97, 261110 (2010).CrossRefGoogle Scholar
  31. 31.
    C. Deutsch, M. Krall, M. Brandstetter, H. Detz, A. M. Andrews, P. Klang, W. Schrenk, G. Strasser, and K. Unterrainer, Appl. Phys. Lett. 101, 211117 (2012).CrossRefGoogle Scholar
  32. 32.
    H. Luo, S. R. Laframboise, Z. R. Wasilewski, G. C. Aers, J. C. Cao, and H. C. Liu, Appl. Phys. Lett. 90, 041112 (2007).CrossRefGoogle Scholar
  33. 33.
    H. Luo, R. Sylvain, Z. R. Wasilewski, and H. C. Liu, Electronics Letters 43, 633 (2007).CrossRefGoogle Scholar
  34. 34.
    H. Luo, R. Sylvain, Z. R. Wasilewski, H. C. Liu, J. C. Cao, Electronics Letters 44, 630 (2008).CrossRefGoogle Scholar
  35. 35.
    I. Vurgaftman, J. R. Meyer, and L. R. Ram-Mohan, J. Appl. Phys. 89, 5815 (2001).CrossRefGoogle Scholar
  36. 36.
    H. Detz, P. Klang, A. M. Andrews, W. Schrenk, and G. Strasser, Journal of Crystal Growth 323, 42 (2011).CrossRefGoogle Scholar
  37. 37.
    C. Deutsch, H. Detz, T. Zederbauer, A. M. Andrews, P. Klang, T. Kubis, G. Klimeck, M. E. Schuster, W. Schrenk, G. Strasser, and K. Unterrainer, Opt. Express 21, 7209 (2013).CrossRefGoogle Scholar
  38. 38.
    R. M. Feenstra, D. A. Collins, D. Z. –Y. Ting, M. W. Wang, and T. C. McGill, Phys. Rev. Lett. 72, 2749 (1994).CrossRefGoogle Scholar
  39. 39.
    T. Kubis, S. R. Mehrotra, G. Klimeck, “Design concepts for terahertz quantum cascade lasers:Proposal for terahertz laser efficiency improvements,” Appl. Phys. Lett. 97, 261106 (2010).CrossRefGoogle Scholar
  40. 40.
    S. Fathololoumi, E. Dupont, Z. R. Wasilewski, C. W. I. Chan, S. G. Razavipour, S. R. Laframboise, S. Huang, Q. Hu, D. Ban, and H. C. Liu, J. Appl. Phys. 113, 113109 (2013).CrossRefGoogle Scholar
  41. 41.
    M. Brandstetter, M. Krall, C. Deutsch, H. Detz, A. M. Andrews, W. Schrenk, G. Strasser and K. Unterrainer, Appl. Phys. Lett. 102, 231121 (2013).Google Scholar
  42. 42.
    Y. Chassagneux, Q. J. Wang, S. P. Khanna, E. Strupiechonski, J. Coudevylle, E. H. Linfield, A. G. Davies, F. Capasso, M. A. Belkin, and R. Colombelli, IEEE Trans. THz Scien. Techn. 2, 83 (2012).CrossRefGoogle Scholar
  43. 43.
    D. Turcinkova, G. Scalari, F. Castellano, M. I. Amanti, M. Beck, and J. Faist, Appl. Phys. Lett. 99, 191104 (2011).Google Scholar
  44. 44.
    S. Barbieri, M. Ravaro, P. Gellie, G. Sanatarelli, C. Manquest, C. Sirtori, S. P. Khanna, E. H. Linfield, and G. Davies, Nature Photonics 5, 377 (2011).CrossRefGoogle Scholar
  45. 45.
    L. Consolino, A. Taschin, P. Bartolini, S. Bartalini, P. Cancio, A. Tredicucci, H. E. Beere, D. A. Ritchie, R. Torre, M. S. Vitiello, and P. De Natale, Nature Communications 3, 1040 (2012).CrossRefGoogle Scholar
  46. 46.
    M. A. Belkin, J. A. Fan, S. Hormoz, F. Capasso, S. P. Khanna, M. Lachab, A. G. Davies, and E. H. Linfield, Opt. Express 16, 3242 (2008).CrossRefGoogle Scholar
  47. 47.
    M. D. Escarra, A. Benz, A. M. Bhatt, A. J. Hoffman, X. Wang, J.-Y. Fan, and C. Gmachl, IEEE Photon. J. 2, 500–509 (2010).CrossRefGoogle Scholar
  48. 48.
    C. Gmachl, A. Tredicucci, D. L. Sivco, A. L. Hutchinson, F. Capasso, and A. Y. Cho, “Bidirectional semiconductor laser,” Science 286, 749 (1999).CrossRefGoogle Scholar
  49. 49.
    E. Dupont, S. Fathololoumi, and H. C. Liu, Phys. Rev. B 81, 205311 (2010).CrossRefGoogle Scholar
  50. 50.
    C. Deutsch, H. Detz, M. Krall, M. Brandstetter, T. Zederbauer, A. M. Andrews, W. Schrenk, W. Schrenk, G. Strasser, and K. Unterrainer, Appl. Phys. Lett. 102, 201102 (2013).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Christoph Deutsch
    • 1
  • Hermann Detz
    • 2
  • Tobias Zederbauer
    • 2
  • Michael Krall
    • 1
  • Martin Brandstetter
    • 1
  • Aaron M. Andrews
    • 2
  • Pavel Klang
    • 2
  • Werner Schrenk
    • 2
  • Gottfried Strasser
    • 2
  • Karl Unterrainer
    • 1
  1. 1.Photonics Institute and Center for Micro- and NanostructuresTechnische Universität WienViennaAustria
  2. 2.Institute for Solid State Electronics and Center for Micro- and NanostructuresTechnische Universität WienViennaAustria

Personalised recommendations