Determination of Leaf Water Content from Terahertz Time-Domain Spectroscopic Data

  • R. Gente
  • N. Born
  • N. Voß
  • W. Sannemann
  • J. Léon
  • M. Koch
  • E. Castro-Camus


We present a numerical method to determine the volumetric water content of leaves from transmission terahertz time-domain spectroscopy data. The method is based on iterative optimization of parameters of an effective medium model for vegetative tissue. We found a very good agreement between measurements performed with this method and direct fresh/dry leaf weight-based water measurements.


Terahertz THz Plant Water Drought Stress Barley 



This work was partly funded by the German Federal Ministry of Education and Research BMBF, competence network “”, subprojects S4 and GS2. We would also like to thank CONACyT (Mexico) [Grant no. 131931] for financial support.


  1. 1.
    J Xu, K W Plaxco, and S J Allen. Absorption spectra of liquid water and aqueous buffers between 0.3 and 3.72 THz. J. Chem. Phys., 124:036101, 2006.CrossRefGoogle Scholar
  2. 2.
    R Huber, F Tauser, A Brodschelm, M Bichler, A Abstreiter, and A Leitenstorfer. How many-particle interactions develop after ultrafast excitation of an electron-hole plasma. Nature, 414:286–289, 2001.CrossRefGoogle Scholar
  3. 3.
    C Richter and C A Schmuttenmaer. Exciton-like trap states limit electron mobility in TiO2 nanotubes. Nat. Nanotechnol., 5:769–772, 2010.CrossRefGoogle Scholar
  4. 4.
    A G Davies, A D Burnett, W H Fan, E H Linfield, and J E Cunningham. Terahertz spectroscopy of explosives and drugs. Mater. Today, 11:18–26, 2008.CrossRefGoogle Scholar
  5. 5.
    M B Johnston, L M Herz, A L T Khan, A Köhler, A G Davies, and E H Linfield. Low-energy vibrational modes in phenylene oligomers studied by THz time-domain spectroscopy. Chem. Phys. Lett., 377:256–262, 2003.CrossRefGoogle Scholar
  6. 6.
    S Ebbinghaus, S J Kim, M Heyden, X Yu, U Heugen, M Gruebele, D M Leitner, and M Havenith. An extended dynamical hydration shell around proteins. Proc. Natl. Acad. Sci. U. S. A., 104:20749–20752, 2007.CrossRefGoogle Scholar
  7. 7.
    E Castro-Camus and M B Johnston. Conformational changes of photoactive yellow protein monitored by terahertz spectroscopy. Chem. Phys. Lett., 455:289–292, 2008.CrossRefGoogle Scholar
  8. 8.
    S W Smye, J M Chamberlain, A J Fitzgerald, and E Berry. The interaction between terahertz radiation and biological tissue. Physics in Medicine and Biology, 46(9):R101, 2001.CrossRefGoogle Scholar
  9. 9.
    R J Falconer and A G Markelz. Terahertz spectroscopic analysis of peptides and proteins. Journal of Infrared, Millimeter and Terahertz Waves, pages 1–16, 2012.Google Scholar
  10. 10.
    S Hadjiloucas, L S Karatzas, and J W Bowen. Measurements of leaf water content using terahertz radiation. IEEE Transactions on Microwave Theory and Techniques, 47(2):142–149, 1999.CrossRefGoogle Scholar
  11. 11.
    B Breitenstein, M Scheller, M K Shakfa, T Kinder, T Müller-Wirts, M Koch, and D Selmar. Introducing terahertz technology into plant biology: A novel method to monitor changes in leaf water status Journal of Applied Botany and Food Quality, 84(2):158, 2011.Google Scholar
  12. 12.
    W L Chan, J Deibel, and D M Mittleman. Imaging with terahertz radiation. Rep. Prog. Phys., 70:1325–1379, 2007.CrossRefGoogle Scholar
  13. 13.
    B B Hu and M C Nuss. Imaging with terahertz waves. Optics Letters, 20(16):1716–1718, 1995.CrossRefGoogle Scholar
  14. 14.
    C Jördens, M Scheller, B Breitenstein, D Selmar, and M Koch. Evaluation of leaf water status by means of permittivity at terahertz frequencies. J. Biol. Phys., 35:255–264, 2009.CrossRefGoogle Scholar
  15. 15.
    H Looyenga. Dielectric constants of heterogeneous mixtures. Physica, 31(3):401–406, 1965.CrossRefGoogle Scholar
  16. 16.
    H J Liebe, G A Hufford, and T Manabe. A model for the complex permittivity of water at frequencies below 1 THz. International Journal of Infrared and Millimeter Waves, 12:659–675, 1991.CrossRefGoogle Scholar
  17. 17.
    P Beckmann and A Spizzichino. The scattering of electromagnetic waves from rough surfaces. Norwood, MA, Artech House, Inc., 1987.Google Scholar
  18. 18.
    P T Boggs and J W Tolle. Sequential quadratic programming. Acta numerica, 4(1):1–51, 1995.MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • R. Gente
    • 1
  • N. Born
    • 1
  • N. Voß
    • 1
  • W. Sannemann
    • 2
  • J. Léon
    • 2
  • M. Koch
    • 1
  • E. Castro-Camus
    • 3
  1. 1.Department of Physics and Materials Sciences CenterPhilipps-Universität MarburgMarburgGermany
  2. 2.Institute of Crop Science and Resource Conservation (INRES)University of BonnBonnGermany
  3. 3.Centro de Investigaciones en Óptica A.C.LeónMéxico

Personalised recommendations