W-Band Planar Wide-Angle Scanning Antenna Architecture

  • Dmitry ZelenchukEmail author
  • Alejandro Javier Martinez-Ros
  • Tomas Zvolensky
  • Jose Luis Gomez-Tornero
  • George Goussetis
  • Neil Buchanan
  • David Linton
  • Vincent Fusco


This paper proposes a hybrid scanning antenna architecture for applications in mm-wave intelligent mobile sensing and communications. We experimentally demonstrate suitable W-band leaky-wave antenna prototypes in substrate integrated waveguide (SIW) technology. Three SIW antennas have been designed that within a 6.5 % fractional bandwidth provide beam scanning over three adjacent angular sectors. Prototypes have been fabricated and their performance has been experimentally evaluated. The measured radiation patterns have shown three frequency scanning beams covering angles from 11 to 56 degrees with beamwidth of 10 ± 3 degrees within the 88-94 GHz frequency range.


Millimeter-wave mobile sensing and communications W-band antennas Leaky wave antennas 



The work was partly supported by the FP7 GigaRadio Marie Curie project (IAPP/2008/230652) and the Leverhulme Trust Research Project Grant F/00 203/U-Phase Conjugate Wireless Communication. The authors appreciate assistance of Mr Jim Francey of OptiPrint AG with manufacturing of the antennas and advice on TaclamPLUS material properties by Mr Manfred Huschka of Taconic ADD.


  1. 1.
    Sturm C, Wiesbeck W (2011) Waveform Design and Signal Processing Aspects for Fusion of Wireless Communications and Radar Sensing. Proceedings of the IEEE 99(7):1236–1259CrossRefGoogle Scholar
  2. 2.
    Groll HP, Detlefsen J (1996) History of automotive anticollision radars and final experimental results of a mm-wave car radar developed on the Technical University of Munich. Proceedings of International Radar Conference. Publishing House of Electron. Ind, Beijing, pp 13–17Google Scholar
  3. 3.
    Chou Y, Lin S, Chung S (2002) Analysis of a grating metal structure with broad back-scattering field pattern for applications in vehicle collision avoidance system. IEEE Transactions on Vehicular Technology 51(1):194–199CrossRefGoogle Scholar
  4. 4.
    Pollard BD, Sadowy G, Moller D, Rodriguez E (2003) A millimeter-wave phased array radar for hazard detection and avoidance on planetary landers. IEEE Aerospace Conference Proceedings. IEEE, Pasadena, pp 1115–1122Google Scholar
  5. 5.
    Van Caekenberghe K, Brakora KF, Sarabandi K (2007) A 94 GHz OFDM Frequency Scanning Radar for Autonomous Landing Guidance. IEEE Radar Conference Proceedings. IEEE, Boston, pp 248–253Google Scholar
  6. 6.
    Jung Y-B, Eom S-Y, Jeon S-I (2010) Novel Antenna System Design for Satellite Mobile Multimedia Service. IEEE Transactions on Vehicular Technology 59(9):4237–4247CrossRefGoogle Scholar
  7. 7.
    Appleby R, Anderton RN, Thomson NH, Jack JW (2004) The design of a real-time 94-GHz passive millimetre-wave imager for helicopter operations. In: Carapezza EM, Driggers RG, Kamerman GW, et al (eds) Proceedings of the SPIE. London, pp 38–46Google Scholar
  8. 8.
    Zhang YP, Liu D (2009) Antenna-on-Chip and Antenna-in-Package Solutions to Highly Integrated Millimeter-Wave Devices for Wireless Communications. IEEE Transactions on Antennas and Propagation 57(10):2830–2841CrossRefGoogle Scholar
  9. 9.
    Appleby BR, Anderton RN (2007) Millimeter-Wave and Submillimeter-Wave Imaging for Security and Surveillance. Proceedings of the IEEE 95(8):1683–1690CrossRefGoogle Scholar
  10. 10.
    Akkermans JAG, Herben MHAJ, Van Beurden MC (2009) Balanced-Fed Planar Antenna for Millimeter-Wave Transceivers. IEEE Transactions on Antennas and Propagation 57(10):2871–2881CrossRefGoogle Scholar
  11. 11.
    Costa JR, Lima EB, Fernandes CA (2009) Compact Beam-Steerable Lens Antenna for 60-GHz Wireless Communications. IEEE Transactions on Antennas and Propagation 57(10):2926–2933CrossRefGoogle Scholar
  12. 12.
    Thornton J, Gregson S, Gray D (2010) Aperture blockage and truncation in scanning lens-reflector antennas. IET Microwaves, Antennas & Propagation 4(7):828–836CrossRefGoogle Scholar
  13. 13.
    Hirokawa J, Ando M, Goto N, Takahashi N, Ojima T, Uematsu M (1995) A single-layer slotted leaky waveguide array antenna for mobile reception of direct broadcast from satellite. IEEE Transactions on Vehicular Technology 44(4):749–755CrossRefGoogle Scholar
  14. 14.
    Ettorre M, Sauleau R, Le Coq L (2011) Multi-Beam Multi-Layer Leaky-Wave SIW Pillbox Antenna for Millimeter-Wave Applications. IEEE Transactions on Antennas and Propagation 59(4):1093–1100CrossRefGoogle Scholar
  15. 15.
    Feng Xu, Ke Wu, Xiupu Zhang (2010) Periodic Leaky-Wave Antenna for Millimeter Wave Applications Based on Substrate Integrated Waveguide. IEEE Transactions on Antennas and Propagation 58(2):340–347CrossRefGoogle Scholar
  16. 16.
    Cheng YJ, Hong W, Wu K, Fan Y (2011) Millimeter-Wave Substrate Integrated Waveguide Long Slot Leaky-Wave Antennas and Two-Dimensional Multibeam Applications. IEEE Transactions on Antennas and Propagation 59(1):40–47CrossRefGoogle Scholar
  17. 17.
    Jackson DR, Williams JT (2005) 2-D periodic leaky-wave Antennas-part II: slot design. IEEE Transactions on Antennas and Propagation 53(11):3515–3524CrossRefGoogle Scholar
  18. 18.
    Gomez-Tornero JL (2011) Unusual tapering of leaky-wave radiators and their applications. Proceedings of the 5th European Conference on Antennas and Propagation (EUCAP). Rome, pp 821–824Google Scholar
  19. 19.
    Garcia-Vigueras M, Gomez-Tornero JL, Goussetis G, Weily AR, Guo YJ (2011) 1D-Leaky Wave Antenna Employing Parallel-Plate Waveguide Loaded With PRS and HIS. IEEE Transactions on Antennas and Propagation 59(10):3687–3694CrossRefGoogle Scholar
  20. 20.
    Zhang M, Hirokawa J, Ando M (2011) An E-Band Partially Corporate Feed Uniform Slot Array With Laminated Quasi Double-Layer Waveguide and Virtual PMC Terminations. IEEE Transactions on Antennas and Propagation 59(5):1521–1527CrossRefGoogle Scholar
  21. 21.
    Ando M, Zhang M, Lee J, Hirokawa J (2010) Design and Fabrication of Millimeter Wave Slotted Waveguide Arrays. Proceedings of the 4h European Conference on Antennas and Propagation (EuCAP). Rome, pp 1–6Google Scholar
  22. 22.
    Martinez-Ros AJ, Gomez-Tornero JL, Goussetis G (2012) Planar Leaky-Wave Antenna With Flexible Control of the Complex Propagation Constant. IEEE Transactions on Antennas and Propagation 60(3):1625–1630CrossRefGoogle Scholar
  23. 23.
    Yu Jian Cheng, Wei Hong, Ke Wu (2010) Millimeter-Wave Half Mode Substrate Integrated Waveguide Frequency Scanning Antenna With Quadri-Polarization. IEEE Transactions on Antennas and Propagation 58(6):1848–1855CrossRefGoogle Scholar
  24. 24.
    Huang M, Xu S, Pan Y (2008) Investigation on a Novel Leaky Wave Antenna with Double Radiation Beam Composed of Left-handed Slab Loaded Hybrid Waveguide using Planar Technology. Journal of Infrared, Millimeter, and Terahertz Waves 30(2):117–127CrossRefGoogle Scholar
  25. 25.
    Thian M, Buchanan NB, Fusco V (2011) Ultrafast Low-Loss 40–70 GHz SPST Switch. IEEE Microwave and Wireless Components Letters 21(12):682–684CrossRefGoogle Scholar
  26. 26.
    Deslandes D, Wu K (2001) Integrated microstrip and rectangular waveguide in planar form. IEEE Microwave and Wireless Components Letters 11(2):68–70CrossRefGoogle Scholar
  27. 27.
    Bozzi M, Perregrini L, Wu K, Arcioni P (2009) Current and Future Research Trends in Substrate Integrated Waveguide Technology. Radioengineering 18(2):201–209Google Scholar
  28. 28.
    Goldstone L, Oliner A (1959) Leaky-wave antennas I: Rectangular waveguides. IRE Transactions on Antennas and Propagation 7(4):307–319CrossRefGoogle Scholar
  29. 29.
    Pozar DM (1997) Microwave Engineering, 2nd ed. John Wiley & SonsGoogle Scholar
  30. 30.
    Xu F, Wu K (2005) Guided-wave and leakage characteristics of substrate integrated waveguide. IEEE Transactions on Microwave Theory and Techniques 53(1):66–73CrossRefGoogle Scholar
  31. 31.
    Garcia-Vigueras M, Gomez-Tornero JL, Goussetis G, Weily AR, Guo YJ (2011) Enhancing Frequency-Scanning Response of Leaky-Wave Antennas Using High-Impedance Surfaces. IEEE Antennas and Wireless Propagation Letters 10(3):7–10CrossRefGoogle Scholar
  32. 32.
    Martinez-Ros A, Gomez-Tornero JL, Quesada-Pereira F, Alvarez-Melcon A (2011) Transverse resonance analysis of a planar leaky wave antenna with flexible control of the complex propagation constant. IEEE International Symposium on Antennas and Propagation (APSURSI). IEEE, pp 1289–1292Google Scholar
  33. 33.
    Zelenchuk DE, Fusco V, Goussetis G, Mendez A, Linton D (2012) Millimeter-Wave Printed Circuit Board Characterization Using Substrate Integrated Waveguide Resonators. IEEE Transactions on Microwave Theory and Techniques 60(10):3300–3308CrossRefGoogle Scholar
  34. 34.
    Patrovsky A, Daigle M (2007) Millimeter-wave wideband transition from CPW to substrate integrated waveguide on electrically thick high-permittivity substrates. 2007 European Microwave Conference. IEEE, pp 138–141Google Scholar
  35. 35.
    Deslandes D, Wu K (2005) Analysis and design of current probe transition from grounded coplanar to substrate integrated rectangular waveguides. IEEE Transactions on Microwave Theory and Techniques 53(8):2487–2494CrossRefGoogle Scholar
  36. 36.
    Lin Y-D, Sheen J-W (1997) Mode distinction and radiation-efficiency analysis of planar leaky-wave line source. IEEE Transactions on Microwave Theory and Techniques 45(10):1672–1680CrossRefGoogle Scholar
  37. 37.
    Balanis CA (1997) Antenna Theory: Analysis and Design, 2nd ed. 960Google Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Dmitry Zelenchuk
    • 1
    Email author
  • Alejandro Javier Martinez-Ros
    • 2
  • Tomas Zvolensky
    • 3
  • Jose Luis Gomez-Tornero
    • 2
  • George Goussetis
    • 1
  • Neil Buchanan
    • 1
  • David Linton
    • 1
  • Vincent Fusco
    • 1
  1. 1.ECIT InstituteQueen’s University of BelfastBelfastUK
  2. 2.Department of Information and Communication TechnologiesTechnical University of CartagenaCartagenaSpain
  3. 3.Department of Radio Science and EngineeringAalto University School of Science and TechnologyHelsinkiFinland

Personalised recommendations