Arrays and New Antenna Topologies for Increasing THz Power Generation Using Photomixers

  • Alejandro Rivera-Lavado
  • Luis Enrique García-Muñoz
  • Gottfried Dohler
  • Stefan Malzer
  • Sascha Preu
  • Sebastian Bauerschmidt
  • Javier Montero-de-Paz
  • Eduardo Ugarte-Muñoz
  • Belén Andrés-García
  • Virginia Izquierdo-Bermúdez
  • Daniel Segovia-Vargas
Article

Abstract

Power limitations in CW THz generation imposed by conventional photomixers (“antenna emitters”, AEs) are the major drawbacks on THz generation. From the antenna point of view, two different strategies are proposed to increase the generated power: optimized arrays and lenses arrangements and the use of new dielectric horn antennas. Then, using multiple small lenses, one per each single element, instead of a large one, bigger than the array, makes the generated power much higher. In addition, horn antennas etched in the substrate are considered in order to reduce the energy distribution scattering. Finally, some manufacturing issues are discussed.

Keywords

High power terahertz Horn antennas Photomixers Planar antennas Lenses Arrays Spiral antennas Terahertz 

References

  1. 1.
    P. H. Siegel, “Terahertz technology,” IEEE Trans. Microwave Theory Tech., vol. 50, no. 3, pp. 910–928, Mar. 2002.CrossRefGoogle Scholar
  2. 2.
    M. Tonouchi, “Cutting-edge terahertz technology,” Nature Photon., vol. 1, pp. 97–105, 2007.CrossRefGoogle Scholar
  3. 3.
    E. R. Brown, “THz generation by photomixing in ultrafast photo-conductors,” Int. J. High Speed Electron. Syst., vol. 13, no. 497, pp. 147–195, 2003.Google Scholar
  4. 4.
    H. Ito, F. Nakajima, T. Futura, and T. Ishibashi, “Continuous THz- wave generation using antenna-integrated uni-traveling-carrier photo- diodes,” Semicond. Sci. Technol., vol. 20, no. 191, pp. 141–150, 2005.Google Scholar
  5. 5.
    G. H. Döhler, F. Renner, O. Klar, M. Eckardt, A. Schwanhuer, S. Malzer, D. Driscoll, M. Hanson, A. C. Gossard, G. Loata, T. Löffler, and H. Roskos, “THz-photomixer based on quasi-ballistic transport,” Semicond. Sci. Technol., vol. 20, pp. 178–190, 2005.CrossRefGoogle Scholar
  6. 6.
    J. Larmor, On a dynamical theory of the electric and luminiferous medium, Philosophical Transactions of the Royal Society 190, pp. 205, 1897.MATHCrossRefGoogle Scholar
  7. 7.
    E. R. Brown, K. A. McIntosh, K. B. Nichols, and C. L. Dennis, Photomixing up to 3.8 THz in low-temperature-grown GaAs, Appl. Phys. Lett. 66, pp. 285, 1995.CrossRefGoogle Scholar
  8. 8.
    S. Preu, G.H. Döhler, S. Malzer, L.J. Wang, H. Lu, and A.C. Gossard, Tunable, Continuous Wave Terahertz Photomixer Sources and Applications (review article), Journal of Applied Physics 109, 061301-1-56, 2011.CrossRefGoogle Scholar
  9. 9.
    W. Lukosz and R. E. Kunz, Light Emission by Magnetic and Electric Dipoles Close to a Plane Dielectric Interface. III. Radiation Patterns of Dipoles with Arbitrary Orientation, J. Opt. Soc. Am. Vol. 69, No. 11, pp. 1495-1503, 1979.CrossRefGoogle Scholar
  10. 10.
    Filipovic, D.F.; Gauthier, G.P.; Raman, S.; Rebeiz, G.M.; , "Off-axis properties of silicon and quartz dielectric lens antennas ," Antennas and Propagation, IEEE Transactions on , vol. 45, no. 5, pp. 760-766, May 1997CrossRefGoogle Scholar
  11. 11.
    Filipovic, D.F.; Gearhart, S.S.; Rebeiz, G.M.; , "Double-slot antennas on extended hemispherical and elliptical silicon dielectric lenses," Microwave Theory and Techniques, IEEE Transactions on , vol. 41, no. 10, pp. 1738-1749, Oct 1993CrossRefGoogle Scholar
  12. 12.
    R. Chatterjee, "Dielectric and dielectric loaded antennas," John Wiley & Sons , New York, 1985.Google Scholar
  13. 13.
    C. Salema, et al., "Solid dielectric horn antennas", Artech House, Boston, 1998.Google Scholar
  14. 14.
    N. Brooking et al., "Radiation pattern of pyramidal dielectric waveguides," Electron. Lett., vol. 10 (1974): 33-34.CrossRefGoogle Scholar
  15. 15.
    E. Lier, "A dielectric hybrid mode antenna feed: a simple alternative to the corrugated horn," IEEE Trans. Antennas Propag., vol. 34, pp. 21-29, 1986.CrossRefGoogle Scholar
  16. 16.
    T. Ando et al., "Linearly and curvilinearly tapered cylindrical-dielectric-rod antennas," IEEE Trans. Antennas Propag., vol. 53, no. 9, pp. 2827-2833, 2005.CrossRefGoogle Scholar
  17. 17.
    S.M. Hanham & T.S. Bird, "A focal-plane array of dielectric rod antennas for THz imaging," EuCAP'11, Rome, 11 - 15 April 2011, pp. 3328-3330.Google Scholar
  18. 18.
    S. K. Palit and W. Perris, “Dielectric-loaded pyramidal horns,” J. Elect. Electron. Eng., vol. 16, no. 2, pp. 139–145, 1996.Google Scholar
  19. 19.
    C. A. Balanis, Advanced Engineering Electromagnetics. Englewood Cliffs, NJ: Prentice Hall, 1989.Google Scholar
  20. 20.
    Hemenway, B.R., Bowers, J.E., Miller, B.I., "Anisotropic undercutting in (100) indium phosphide," Electronics Letters , vol. 19, no. 24, pp. 1049-1051, November 24 1983.CrossRefGoogle Scholar
  21. 21.
    S. Preu, S. Malzer, G. H. Döhler, J. Zhang, Z. H. Lu, and L. J. Wang, "Highly collimated and directional continous-wave Terahertz emission by photomixing in semiconductor device arrays” Proc SPIE 6194, 61940F, 2006.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Alejandro Rivera-Lavado
    • 1
  • Luis Enrique García-Muñoz
    • 1
  • Gottfried Dohler
    • 2
  • Stefan Malzer
    • 2
  • Sascha Preu
    • 2
  • Sebastian Bauerschmidt
    • 2
  • Javier Montero-de-Paz
    • 1
  • Eduardo Ugarte-Muñoz
    • 1
  • Belén Andrés-García
    • 1
  • Virginia Izquierdo-Bermúdez
    • 1
  • Daniel Segovia-Vargas
    • 1
  1. 1.Carlos III University of MadridMadridSpain
  2. 2.Friedrich-Alexander - Universität Erlangen-NürnbergErlangenGermany

Personalised recommendations