Radiometric Active Indoor Imaging in the W-Band

  • M. Canavero
  • A. Murk
  • C. Mätzler
  • D. Nötel
  • Johann Huck


Millimeter wave passive imaging systems constitute a good compromise between resolution and penetration depth for a variety of imaging applications. In an outdoor scenario, the cold sky radiation, interacting with the reflectivity characteristics of the targets, constitutes the main source of contrast in the acquired images. In indoor applications such a source is not available, and higher thermal sensitivity is required. Alternatively, one has to provide an artificial illumination to the scene in order to increase its dynamic range. The implementation of an active source for a passive radiometer can, under certain conditions, increase the contrast of the images acquired and add extra information to the measurement. With such a setup, outdoor systems can be used for indoor observations (the absence of cold sky radiation is compensated with active illumination). The subject of our study is to better understand which kind of source and which setup can provide a diffuse illumination over the targets. This topic was investigated by conducting observations of various indoor scenes with two radiometers in the W-Band, using noise and continuous wave (CW) sources as illumination. In this paper we present the results achieved and our conclusions in order to provide an efficient illumination for indoor environment.


Active Illumination Radiometer Indoor Imaging W-Band 



The SPIRA instrument and the test campaign have been funded by armasuisse W + T under Project No. R-3210/040-11. Special thanks to Dr. Hans Pratisto, Roland Oechslin (armasuisse), Frank Klöppel and Rudolf Schönewald (Fraunofer – FHR) for their precious help during the campaign.


  1. 1.
    N.A.Salmon and R. Appleby, “Sky radiation Temperature changes and fluctuations in the millimeter-wave band”, Passive Millimeter- Wave Imaging Technology IV, Proc.SPIE 4032, pp.: 98-102, 2000.Google Scholar
  2. 2.
    E.Heinz et al, “Development of passive submillimeter-wave video imaging systems for security applications”, Millimeter Wave and Terahertz sensors and Technology V, Proc. SPIE 8544, 2012.Google Scholar
  3. 3.
    D. Petkie et al, “Active and Passive imaging in the THz spectral region: phenomenology, dynamic range, modes, and illumination”, Journal of Optic Society vol.: 25, no.:9, pp.: 1523-1531, 2008.Google Scholar
  4. 4.
    A. Duric, A. Magun, A. Murk, C. Mätzler, N. Kämpfer, “The Fully Polarimetric Imaging Radiometer SPIRA at 91 GHz”, IEEE Transactions on Geoscience and Remote Sensing, vol.: 46, no.: 8, pp.: 2323-2336, 2008.Google Scholar
  5. 5.
    C.Eiachi, J. Van Zyl, “Introduction to the physics and techniques of Remote Sensing”, 2nd Ed. Wiley.Google Scholar
  6. 6.
    A. Murk et al, “Polarimetric Imaging with the 91 GHz Radiometer SPIRA”, Millimeter Wave and Terahertz sensors and Technology III, Proc.SPIE 7837, 2010.Google Scholar
  7. 7.
    Duric, A. Magun, “Polarimetric Measurements with a Fully Polarimetric Imaging Radiometer at 91 GHz”, Proceedings of International Joint conference of 4th ESA workshop on Millimeter-Wave Technology and App.,Espoo, Finland, February 2006.Google Scholar
  8. 8.
    C. Mätzler, A. Murk, “Active Beleuchtung für Szenen von SPIRA: Vorabklärungen”, Research Report N° 2009-11-MW, IAP University of Bern, December 2009.Google Scholar
  9. 9.
    M. Canavero, A. Murk, “Scanning Polarimetric Imaging Radiometer: Microwave Imaging System and Image Merging with IR and Optical Data”, Proc. 6th Future Security Research Conference, September 2011.Google Scholar
  10. 10.
    M. Canavero, A. Murk, “Polarimetric Modeling, Calibration and Active Imaging at 91 GHz”, Proc. 6th ESA Workshop on Millimeter Wave Technology and Applications, Espoo, Finland, May 2011.Google Scholar
  11. 11.
    D. Ong et al, “Analysis of laser speckle severity, granularity and anisotropy using the power spectral density in polar coordinates representation”, SPIE Optical Engineering 51(5), May 2012.Google Scholar
  12. 12.
    F. Sarto et al, “Electrode surface morphology characterization by atomic force microscopy”, Proc. ICCF-14 International Conf. on Condensed Matter Nuclear Science, vol.: 2, pp.: 437-443, 2008Google Scholar
  13. 13.
    S. Siegenthaler, M. Canavero, A. Murk, “Post Processing of MMW images of SPIRA”, Research Report No 3-2011. IAP University of Bern, January 2012.Google Scholar
  14. 14.
    Merril Skolnik, “Introduction to radar systems”, second edition, McGraw Hill, 1981.Google Scholar
  15. 15.
    W. Lauterbom, T.Kurz, M. Wiesenfeldt, “Coherent Optics: Fundamentals and Applications”, Springer.Google Scholar
  16. 16.
    J.I. Glaser, “Some results in the bistatic radar cross section (RCS) of complex objects”, Proceedings of IEEE, vol.: 77 Issue 5, 1989.Google Scholar
  17. 17.
    C. Mätzler, “Applications of the Interaction of the Microwaves with the Natural Snow Cover ”, Remote Sensing Reviews, vol.: 2, pp.: 259-392, 1987Google Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • M. Canavero
    • 1
  • A. Murk
    • 1
  • C. Mätzler
    • 1
  • D. Nötel
    • 2
  • Johann Huck
    • 2
  1. 1.Institute of Applied PhysicsUniversity of BernBernSwitzerland
  2. 2.Fraunhofer Institute for High Frequency Physics and Radar Techniques FHRWachtbergGermany

Personalised recommendations