Lifetime Measurement of Excitons in Si by Terahertz Time-domain Spectroscopy with High Spectral Resolution



We have developed an optical pump and terahertz (THz) probe spectroscopy scheme to study the photoexcited dynamics in solids ranging from sub-microsecond to a millisecond regime. We applied the developed scheme to measure the lifetime of long-lived indirect excitons in Si through the observation of intra-exciton transitions, resolving the fine structure of excitons with high spectral resolution in a spectral range from 0.5 to 7 THz (2 to 29 meV). We also performed the lifetime measurement of the lowest energy spin-forbidden dark excitons under the magnetic field. Through the observation of intra-exciton transitions, otherwise inaccessible spin-forbidden dark excitons were directly probed by the THz time-domain spectroscopy. By comparing with the photoluminescence spectroscopy, we revealed that the lowest energy dark excitons are accumulated in the crystal, whereas the recombination dynamics is governed by the nonradiative decay process.


Semiconductor Photoexcited dynamics Exciton Dark exciton Si Terahertz time-domain spectroscopy 



This work was supported in part by Gran-in-Aid for Scientific Research (Grants No. 22244036, No. 23104705, and No. 20110005) and by the Photon Frontier Network Program from MEXT, Japan.


  1. 1.
    For a recent review, see e.g., R. Ulbricht, E. Hendry, J. Shan, T. F. Heinz, and M. Bonn, Rev. Mod. Phys. 83, 543 (2011).Google Scholar
  2. 2.
    J. Leuthold, C. Koos, and W. Freude, Nat. Photon. 4, 535 (2010).CrossRefGoogle Scholar
  3. 3.
    T. Suzuki and R. Shimano, Phys. Rev. Lett. 103, 057401 (2009).CrossRefGoogle Scholar
  4. 4.
    T. Suzuki and R. Shimano, Phys. Rev. B 83, 085207 (2011).CrossRefGoogle Scholar
  5. 5.
    T. Suzuki and R. Shimano, Phys. Rev. Lett. 109, 046402 (2012).CrossRefGoogle Scholar
  6. 6.
    Q. Wu and X. C. Zhang, Appl. Phys. Lett. 70, 1784 (1997).CrossRefGoogle Scholar
  7. 7.
    M. Tajima, Appl. Phys. Lett., 32, 719 (1978).CrossRefGoogle Scholar
  8. 8.
    T. Nishino, M. Takeda , and Y. Hamakawa, Sol. Stat. Commun. 12, 1137 (1973).CrossRefGoogle Scholar
  9. 9.
    N. O. Lipari and M. Altarelli, Phys. Rev. B 15, 4883 (1977).CrossRefGoogle Scholar
  10. 10.
    D. Labrie, M. L. W. Thewalt, I. J. Booth, and G. Kirczenow, Phys. Rev. Lett. 61, 1882 (1988).CrossRefGoogle Scholar
  11. 11.
    T. Timusk and H. Navarro, Sol. Stat. Commun. 25, 217 (1978).CrossRefGoogle Scholar
  12. 12.
    M. A. Tamor and J. P. Wolfe, Phys. Rev. Lett. 44, 1703 (1980).CrossRefGoogle Scholar
  13. 13.
    R. B. Hammond and R. N. Silver, Appl. Phys. Lett. 36, 68 (1980).CrossRefGoogle Scholar
  14. 14.
    A. Haug, Sol. Stat. Commun. 25, 477 (1978).CrossRefGoogle Scholar
  15. 15.
    P. L. Gourley and J. P. Wolfe, Phys. Rev. B 24, 5970 (1981).CrossRefGoogle Scholar
  16. 16.
    Ya. Pokrovskii, phys. stat. sol. (a) 11, 385 (1972).Google Scholar
  17. 17.
    R. M. Westervelt, Phys. Status Solidi (b) 76, 31 (1976).CrossRefGoogle Scholar
  18. 18.
    H. Navarro, H. G. Zarate and T. Timusk, Sol. Stat. Commun. 25, 1045 (1978).CrossRefGoogle Scholar
  19. 19.
    R. B. Hammond, D. L. Smith, and T. C. McGill, Phys. Rev. Lett. 35, 1535 (1975).Google Scholar
  20. 20.
    G. Feher, Phys. Rev. 114, 1219 (1959).CrossRefGoogle Scholar
  21. 21.
    P. Lawartz, Phys. Rev. B 4, 3460 (1971).CrossRefGoogle Scholar
  22. 22.
    N. O. Lipari and A. Baldereschi, Phys. Rev. B 3, 2497 (1971).CrossRefGoogle Scholar
  23. 23.
    A. A. Konchits, I. M. Zaritskii, and D. B. Shanina, Pis’ma Zh. Eksp. Teor. Fiz. 29, 713 (1979) [JETP Lett. 29, 655 (1979)].Google Scholar
  24. 24.
    J.Y. Yoo, T. Suzuki, and R. Shimano, IRMMW-THz 2011 IEEE Conference Proceedings (2011) doi: 10.1109/irmmw-THz.2011.6104862
  25. 25.
    T. Ohyama, Phys. Rev. B 23, 5445 (1981).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.Department of PhysicsThe University of TokyoTokyoJapan

Personalised recommendations