Advertisement

THz Gyrotron and BWO Designed for Operation in DNP-NMR Spectrometer Magnet

  • V. L. Bratman
  • A. E. Fedotov
  • Yu. K. Kalynov
  • P. B. Makhalov
  • A. Samoson
Article

Abstract

Dynamic nuclear polarization (DNP) in high-field nuclear magnetic resonance (NMR) spectroscopy requires medium-power terahertz radiation, which nowadays can be provided basically by gyrotrons with superconducting magnets. As the electron cyclotron frequency is very close to the frequency of electron paramagnetic resonance for the same magnetic field, under certain conditions the gyrotron can be installed inside the same solenoid used for NMR spectrometer. This eliminates the need for an additional superconducting magnet, results in a shorter terahertz transmission line, and can make DNP systems practical. In addition to an extremely low-voltage gyrotron (“gyrotrino”), we analyze also advantages of strong magnetic field for a slow-wave electron device as an alternative terahertz source.

Keywords

Gyrotron Backward-wave oscillator DNP-NMR spectroscopy Superconducting magnet 

Notes

Acknowledgements

The reported study was partially supported by RFBR, research projects Nos. 12-02-31722, 13-02-01176.

References

  1. 1.
    T.R. Carver and C.P. Slichter, Phys. Rev. 92, 212 (1953).CrossRefGoogle Scholar
  2. 2.
    A.W. Overhauser, Phys. Rev. 92, 411 (1953).CrossRefMATHGoogle Scholar
  3. 3.
    R.G. Griffin and T.F. Prisner, Phys. Chem. Chem. Phys 12, 5737 (2010).CrossRefGoogle Scholar
  4. 4.
    E.A. Nanni, A.B. Barnes, R.G. Griffin, and R.J. Temkin, IEEE Trans. on THz Science and Technology 1, 145 (2011).CrossRefGoogle Scholar
  5. 5.
    C. Griesinger, M. Bennati, H.M. Vieth, C. Luchinat, G. Parigi, P. Hofer, F. Engelke, S.J. Glaser, V. Denysenkov, T.F. Prisner, Progress in NMR Spectr. 64, 4 (2012).CrossRefGoogle Scholar
  6. 6.
    L.R. Becerra, G.J. Gerfer, R.J. Temkin, D.J. Singel, and R.G. Griffin, Phys. Rev. Lett. 71, 3562 (1993).CrossRefGoogle Scholar
  7. 7.
    M.K. Hornstein, V.S. Bajaj, R.G. Griffin, and R.J. Temkin, IEEE Trans. Plasma Sci. 35, 27 (2007).CrossRefGoogle Scholar
  8. 8.
    T. Idehara, T. Saito, I. Ogawa, S. Mitsudo, Y. Tatematsu, La Agusu, H. Mori and S. Kobayashi, Appl. Magn. Resonance 34, 265 (2008).CrossRefGoogle Scholar
  9. 9.
    V. Denisenkov, M.J. Prandolini, M. Gafurov, D. Sezar, B. Endeward, and T.F. Prisner, Phys. Chem. Chem. Phys. 12, 5786 (2010).CrossRefGoogle Scholar
  10. 10.
    N.P. Venediktov, V.V. Dubrov, V.E. Zapevalov, S.Y. Kornishin, A.V. Kotov, A.N. Kuftin, O.V. Malygin, A.S. Sedov, A.S. Fiks, and V.I. Tsalolikhin, Radiophys. Quantum Electronics 53, 237 (2010).CrossRefGoogle Scholar
  11. 11.
    V.L. Bratman, M.Yu. Glyavin, V.E. Zapevalov, Yu.K. Kalynov, A.E. Fedotov, II Dynamic Nuclear Polarization Symposium: Theory, Hardware, Applications, Radicals, Koenigstein, Germany, Sept. 2-4, 2009.Google Scholar
  12. 12.
    V.L. Bratman, A.E. Fedotov, Yu.K. Kalynov, 8th Int. Workshop “Strong microwaves and terahertz waves: sources and applications” (SMP-2011), Nizhny Novgorod – St. Petersburg, Russia, July 9-16, 2011.Google Scholar
  13. 13.
    J.R. Sirigiri, T. Maly, Patent Application No. US 2012/0176133 A1, Jul. 12, 2012.Google Scholar
  14. 14.
    L.A. Surin, B.S. Dumesh, F. Lewen, D.A. Roth, V.P. Kostromin, F.S. Rusin, G. Winnewisser, and I. Pak, Rev. Sci. Instrum. 72, 2535 (2001).CrossRefGoogle Scholar
  15. 15.
    M.J. Prandolini, V.P. Denysenkov, M. Gafurov, B. Endeward, and T.F. Prisner, Journal of the American Chemical Society 131, 6090 (2009).CrossRefGoogle Scholar
  16. 16.
    K.R. Thurber, W.-M. Yau, and R. Tycko, J. Magn. Resonance 204, 303 (2010).CrossRefGoogle Scholar
  17. 17.
    A. A. Andronov, V. A. Flyagin, A. V. Gaponov, A. L. Goldenberg, M. I. Petelin, V. G. Usov, and V. K. Yulpatov, Infrared Phys. 18, 385 (1978).CrossRefGoogle Scholar
  18. 18.
    G.S. Nusinovich, Introduction to the Physics of Gyrotrons (JHU Press, Balyimore, MD, 2004).Google Scholar
  19. 19.
    M.Y. Glyavin, N.A. Zavolskiy, A.S. Sedov, and G.S. Nusinovich, Physics of Plasmas 20, 033103 (2013).CrossRefGoogle Scholar
  20. 20.
    V.E.Zapevalov, A.N.Kuftin, V.N.Manuilov, M.A.Moiseev, A.B..Pavelyev, A.S.Sedov, N.A.Zavolsky, Proceedings of 8th Int. Workshop “Strong Microwaves and Terahertz Waves: Sources and Applications” (SMP-2011), Nizhny Novgorod – St. Petersburg, Russia, July 9-16, 2011, p. 143.Google Scholar
  21. 21.
    M.B. Golant, Z.T. Alekseenko, Z.S. Korotkova, Instruments and Experimental Techniques (Pribory i tekhnika eksperimenta) 12, 231 (1969).Google Scholar
  22. 22.
    D. Chernin, A. Burke, I. Chernyavskiy, J. Petillo, R. Dobbs, A. Roitman, P. Horoyski, M. Hyttinen, D. Berry, M. Blank, K. Nguyen, V. Jabotinsky, D. Pershing, E. Wright, J. Calame, B. Levush, J. Neilson, T. Gaier, A. Skalare, N.S. Barker, R. Weikle, J. Booske, 2010 Int. Vacuum Electronics Conf. (IVEC), Monterey, California, May 18-20, 2010, p. 217.Google Scholar
  23. 23.
    V.L. Bratman, B.S. Dumesh, A.E. Fedotov, P.B. Makhalov, B.Z. Movshevich, F.S. Rusin, IEEE Trans. of Plasma Sci. 38, 1466 (2010).CrossRefGoogle Scholar
  24. 24.
    V.L. Bratman, A.E. Fedotov, and P.B. Makhalov, Physics of Plasmas 19, 020704 (2012).CrossRefGoogle Scholar
  25. 25.
    J. W. Gibson, G. A. Haas, and R. E. Thomas, IEEE Trans. Electron Devices 36, 209 (1989).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • V. L. Bratman
    • 1
    • 2
  • A. E. Fedotov
    • 1
  • Yu. K. Kalynov
    • 1
  • P. B. Makhalov
    • 1
  • A. Samoson
    • 3
    • 4
  1. 1.Institute of Applied Physics of the Russian Academy of SciencesNizhny NovgorodRussia
  2. 2.Nizhny Novgorod State UniversityNizhny NovgorodRussia
  3. 3.Tallinn University of TechnologyTallinnEstonia
  4. 4.Physics DepartmentUniversity of WarwickCoventryUK

Personalised recommendations