Advertisement

Continuously Tunable 250 GHz Gyrotron with a Double Disk Window for DNP-NMR Spectroscopy

  • Sudheer Jawla
  • Qing Zhe Ni
  • Alexander Barnes
  • William Guss
  • Eugenio Daviso
  • Judith Herzfeld
  • Robert Griffin
  • Richard Temkin
Article

Abstract

In this paper, we describe the design and experimental results from the rebuild of a 250 GHz gyrotron used for Dynamic Nuclear Polarization enhanced Nuclear Magnetic Resonance spectroscopy on a 380 MHz spectrometer. Tuning bandwidth of approximately 2 GHz is easily achieved at a fixed magnetic field of 9.24 T and a beam current of 95 mA producing an average output power of >10 W over the entire tuning band. This tube incorporates a double disk output sapphire window in order to maximize the transmission at 250.58 GHz. DNP Signal enhancement of >125 is achieved on a 13C-Urea sample using this gyrotron.

Keywords

Gyrotron Double disk window Frequency tunable Gaussian beam Waveguide 

Notes

Acknowledgements

This research was supported by the National Institutes of Health through grants EB002804, EB003151, EB002026, EB001960, EB001035, EB001965, and EB004866. We also thank Ivan Mastovsky for helping during the fabrication and assembling of the components.

References

  1. 1.
    C. Jaroniec, C. MacPhee, V. Bajaj, M. McMahon, C. Dobson, R. Griffin, Proc. Natl. Acad. Sci. 101 (2004) 711–716.CrossRefGoogle Scholar
  2. 2.
    A. Petkova, Y. Ishii, J. Balbach, O. Antzutkin, R. Leapman, F. Delaglio, R. Tycko, Proc. Natl. Acad. Sci. 99 (2002) 16742.CrossRefGoogle Scholar
  3. 3.
    R. Tycko, Curr. Opin. Struct. Biol. 14 (2004) 96–103.CrossRefGoogle Scholar
  4. 4.
    M. Bayro, T. Maly, N. Birkett, C. MacPhee, C. Dobson, R. Griffin, Biochemistry 49 (2010) 7474–7488.CrossRefGoogle Scholar
  5. 5.
    F. Creuzet, A. McDermott, R. Gebhard, K. van der Hoef, M. Spijker-Assink, J. Herzfeld, J. Lugtenburg, M. Levitt, R. Griffin, Science 251 (1991) 783–786.CrossRefGoogle Scholar
  6. 6.
    Y. Li, D. Berthold, R. Gennis, C. Rienstra, Protein Sci. 17 (2008) 199–204.CrossRefGoogle Scholar
  7. 7.
    A. Nevzorov, S. Park, S. Opella, J. Biomol. NMR 37 (2007) 113–116.CrossRefGoogle Scholar
  8. 8.
    S. Cady, C. Goodman, C. Tatko, W. DeGrado, M. Hong, J. Am. Chem. Soc. 129 (2007) 5719–5729.CrossRefGoogle Scholar
  9. 9.
    S. Cady, M. Hong, Proc. Natl. Acad. Sci. 105 (2008) 1483–1488.CrossRefGoogle Scholar
  10. 10.
    J. Moffat, V. Vijayvergiya, P. Gao, T. Cross, D. Woodbury, D. Busath, J. Biophys. 94 (2008) 434–445.CrossRefGoogle Scholar
  11. 11.
    Z. Song, F. Kovacs, J. Wang, J. Denny, S. Shekar, J. Quine, T. Cross, J. Biophys. 79 (2000) 767–775.CrossRefGoogle Scholar
  12. 12.
    S. Kim, S. Matsuoka, G. Patti, J. Schaefer, Biochemistry 47 (2008) 3822–3831.CrossRefGoogle Scholar
  13. 13.
    A.B. Barnes, G. De Paëpe, P. van der Wel, K. Hu, C. Joo, V. Bajaj, M. Mak-Jurkauskas, J. Sirigiri, J. Herzfeld, and R. Temkin, Applied magnetic resonance 34 (2008) 237–263.CrossRefGoogle Scholar
  14. 14.
    L.R. Becerra, G.J. Gerfen, R.J. Temkin, D.J. Singel, and R.G. Griffin, Phys. Rev. Lett. 71 (1993) 3561–3564.CrossRefGoogle Scholar
  15. 15.
    G. Gerfen, L. Becerra, D. Hall, R. Griffin, R. Temkin, D. Singel, J. Chem. Phys. 102 (1995) 9494–9497.CrossRefGoogle Scholar
  16. 16.
    V.S. Bajaj, C.T. Farrar, M.K. Hornstein, I. Mastovsky, J. Vieregg, J. Bryant, B. Elena, K.E. Kreischer, R.J. Temkin, and R.G. Griffin, J. Magn. Reson., 160 (2003) 85–90.CrossRefGoogle Scholar
  17. 17.
    M. Rosay, V. Weis, K.E. Kreischer, R.J. Temkin, and R.G. Griffin, J. Am. Chem. Soc. Society 124 (2002) 3214–3215.CrossRefGoogle Scholar
  18. 18.
    V. Bajaj, M. Mak-Jurkauskas, M. Belenky, J. Herzfeld, and R. Griffin, Proc. Natl. Acad. Sci. 106 (2009) 9244.CrossRefGoogle Scholar
  19. 19.
    A. B. Barnes, B. Corzilius, M. Mak-Jurkauskas, L. Andreas, V. Bajaj, Y. Matsuki, M. Belenky, J. Lugtenburg, J. Sirigiri, R. Temkin, J. Herzfeld, and R.G. Griffin, Phys. Chem. Chem. Phys. 12 (2010) 5861–5861CrossRefGoogle Scholar
  20. 20.
    M. Rosay, A.C. Zeri, N.S. Astrof, S.J. Opella, J. Herzfeld, and R.G. Griffin, J. Am. Chem. Soc. 123 (2001) 1010–1011.CrossRefGoogle Scholar
  21. 21.
    M.L. Mak-Jurkauskas, V.S. Bajaj, M.K. Hornstein, M. Belenky, R.J. Temkin, R.G. Griffin, and J. Herzfeld, Proceedings of the National Academy of Sciences of the United States of America 105 (2008) 883–888.CrossRefGoogle Scholar
  22. 22.
    Y. Matsuki, K. Ueda, T. Idehara, R. Ikeda, K. Kosuga, I. Ogawa, S. Nakamura, M. Toda, T. Anai, and T. Fujiwara, J. Infrared and Millimeter Waves. 33 (2012) 745–755.CrossRefGoogle Scholar
  23. 23.
    K.E. Kreischer, C. Farrar, R.G. Griffin, R.J. Temkin, and J. Vieregg, Proceedings of the 24th International Conference on Infrared and Millimeter Waves, L. Lombardo, (Ed.), UC Davis, Monterey, CA, 1999, pp. TU-A3.Google Scholar
  24. 24.
    V.S. Bajaj, M.K. Hornstein, K.E. Kreischer, J.R. Sirigiri, P.P. Woskov, M. Mak, J. Herzfeld, R.J. Temkin, and R.G. Griffin, J. Magn. Reson., 190 (2007) 86–114.Google Scholar
  25. 25.
    M.K. Hornstein, V.S. Bajaj, R.G. Griffin, K.E. Kreischer, I. Mastovsky, M.A. Shapiro, J.R. Sirigiri, and R.J. Temkin, IEEE Trans. on Electron Devices 52 (2005) 798–807.CrossRefGoogle Scholar
  26. 26.
    S.T. Han, R.G. Griffin, K.N. Hu, C.G. Joo, C.D. Joye, J.R. Sirigiri, R.J. Temkin, A.C. Torrezan, and P.P. Woskov, IEEE Trans. on Plasma Science 35 (2007) 559–564.CrossRefGoogle Scholar
  27. 27.
    A.C. Torrezan, S.T. Han, I. Mastovsky, M.A. Shapiro, J.R. Sirigiri, R.J. Temkin, A.B. Barnes, and R.G. Griffin, IEEE Trans. on Plasma Science, 38 (2010) 1150–1159.CrossRefGoogle Scholar
  28. 28.
    A. C. Torrezan, M. A. Shapiro, J. R. Sirigiri, R. J. Temkin, and R. G. Griffin, IEEE Trans. Electron Devices, vol. 58, no. 8, pp. 2777–2783, Aug. 2011.Google Scholar
  29. 29.
    E.A. Nanni, A.B. Barnes, R.G. Griffin, and R.J. Temkin, IEEE Trans. on Terahertz Science and Technology, 1 (2011) 145–163.CrossRefGoogle Scholar
  30. 30.
    Toshitaka Idehara, Kosuke Kosuga, La Agusu, Ryosuke Ikeda, Isamu Ogawa, et al., Journal of Infrared, Millimeter and Terahertz Waves, Volume 31, Number 7, Pages 775–790, 2010.CrossRefGoogle Scholar
  31. 31.
    V. Denysenkov, M. J. Prandolini, M. Gafurov, D. Sezer, B. Endeward, and T. F. Prisner, Physical Chem. Chemical Phys., vol. 12, no. 22, pp. 5786–5790, 2010.Google Scholar
  32. 32.
    U. Akbey, W. T. Franks, A. Linden, S. Lange, R. G. Griffin, B.-J. van Rossum, and H. Oschkinat, Ang. Chem. Int. vol. 49, no. 42, pp. 7803–7806, 2010.CrossRefGoogle Scholar
  33. 33.
    Y. Matsuki, H. Takahashi, K. Ueda, T. Idehara, I. Ogawa, M. Toda, H. Akutsu, and T. Fujiwara, Physical Chem. Chemical Phys., vol. 12, no. 22, pp. 5799–5803, 2010.Google Scholar
  34. 34.
    M. Rosay, L. Tometich, S. Pawsey, R. Bader, R. Schauwecker, M. Blank, P. M. Borchard, S. R. Cauffman, K. L. Felch, R. T. Weber, R. J. Temkin, R. G. Griffin, and W. E. Maas, Physical Chem. Chemical Phys., vol. 12, no. 22, pp. 5850–5860, 2010.Google Scholar
  35. 35.
    V. Vitzthum, M. A. Caporini, and G. Bodenhausen, J. Magn. Reson., vol. 205, no. 1, pp. 177–179, 2010.Google Scholar
  36. 36.
    A. B. Barnes, E. Markhasin, E. Daviso, V. K. Michaelis, E. Mena, R. DeRocher, A. Thakkar, E. A. Nanni, S. Jawla, P Woskov, J. Herzfeld, R. J. Temkin, R. G. Griffin, J. Magn. Reson. (2012), vol. 224, pp. 1–7.CrossRefGoogle Scholar
  37. 37.
    A. B. Barnes, E. A. Nanni, J. Herzfeld, R. G. Griffin, R. J. Temkin, J. Magn. Reson. (2012), vol. 221, pp. 147–153.Google Scholar
  38. 38.
    A. W. Fliflet and M. E. Read, Int. J. Electron., vol. 51, no. 4, pp. 475–484, 1981.CrossRefGoogle Scholar
  39. 39.
    M. Botton, T.M. Antonsen Jr, B. Levush, K.T. Nguyen, and A.N. Vlasov, IEEE Trans. on Plasma Science, 26 (1998) 882–892.CrossRefGoogle Scholar
  40. 40.
    S. N. Vlasov, L. I. Zagryadskaya, and M. I. Petelin, Radio Eng. Electron. Phys., vol. 12, no. 10, pp. 14–17, 1975.Google Scholar
  41. 41.
    K. Felch, M. Blank, P. Borchard, T. S. Chu ; J. Feinstein, H. R. Jory, J. A. Lorbeck, C. M. Loring, Y. M. Mizuhara, J. M. Neilson, R. Schumacher, R. J. Temkin, IEEE Trans. on Plasma Science, Vol. 24 , pp. 558 – 569 (1996).CrossRefGoogle Scholar
  42. 42.
    P.W. Woskov, V.S. Bajaj, M.K. Hornstein, R.J. Temkin, and R.G. Griffin, IEEE Trans. on Microwave Theory and Techniques, 53 (2005) 1863–69.CrossRefGoogle Scholar
  43. 43.
    E.A. Nanni, A.B. Barnes, Y. Matsuki, P.P. Woskov, B. Corzilius, R.G. Griffin, and R.J. Temkin, J. Magn. Reson. 210 (2011) 16–23.CrossRefGoogle Scholar
  44. 44.
    E.A. Nanni, S.K. Jawla, M. A. Shapiro, P.P. Woskov, and R.J. Temkin, J. Infrared and Millimeter Waves. 33 (2012) 695–714.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2012

Authors and Affiliations

  • Sudheer Jawla
    • 1
  • Qing Zhe Ni
    • 2
  • Alexander Barnes
    • 2
  • William Guss
    • 1
  • Eugenio Daviso
    • 2
    • 3
  • Judith Herzfeld
    • 3
  • Robert Griffin
    • 2
  • Richard Temkin
    • 1
  1. 1.Plasma Science and Fusion CenterMassachusetts Institute of TechnologyCambridgeUSA
  2. 2.Francis Bitter Magnet Lab and Department of ChemistryMassachusetts Institute of TechnologyCambridgeUSA
  3. 3.Department of ChemistryBrandies UniversityWalthamUSA

Personalised recommendations