THz Wave Modulators: A Brief Review on Different Modulation Techniques

Article

Abstract

We review different techniques for modulation of the electromagnetic properties of terahertz (THz) waves. We discuss various approaches for electronic, optical, thermal and nonlinear modulation in distinct material systems such as semiconductors, graphene, photonic crystals and metamaterials. The modulators are classified and compared with respect to modulation speed, modulation depth and categorized by the physical quantity they control as e.g. amplitude, phase, spectrum, spatial and temporal properties of the THz wave. Based on the review paper, the reader should obtain guidelines for the proper choice of a specific modulation technique in view of the targeted application.

Keywords

Terahertz wave modulators Metamaterials, graphene Electronic modulation All-optical modulation Photonic crystal modulators Nonlinear tuning of metamaterials Magnetic field tuning 

References

  1. 1.
    J. P. Gordon, H. J. Zeiger, and C. H. Townes, “Molecular Microwave Oscillator and New Hyperfine Structure in the Microwave Spectrum of NH3,” Phys. Rev. 95, 282–284 (1954).CrossRefGoogle Scholar
  2. 2.
    T. H. Maiman, “Stimulated Optical Radiation in Ruby,” Nature 187, 493–494 (1960).CrossRefGoogle Scholar
  3. 3.
    W. M. Steen, J. Mazumder, and K. G. Watkins, "Laser Material Processing," 4th edition, Springer London (2010).CrossRefGoogle Scholar
  4. 4.
    Th. Udem, R. Holzwarth, and T. W. Hänsch, "Optical Metrology," Nature 416, 233-237 (2002).CrossRefGoogle Scholar
  5. 5.
    W. Demtröder, "Laser Spectroscopy: Vol. 1: Basic Principles," 4th edition, Springer (2008).Google Scholar
  6. 6.
    W. Demtröder, "Laser Spectroscopy: Vol. 2: Experimental Techniques," 4th edition, Springer (2008).Google Scholar
  7. 7.
    J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao and R. P. Van Duyne, "Biosensing with plasmonic nanosensors," Nature Mat. 7, 442-453 (2008).CrossRefGoogle Scholar
  8. 8.
    G. P. Agrawal, "Fiber-Optic Communication Systems (Wiley Series in Microwave and Optical Engineering), 4th edition, Wiley (2010).Google Scholar
  9. 9.
    D. Qian, M.-F. Huang, E. Ip, Y. Huang, Y. Shao, J. Hu, and T. Wang, “101.7 Tb/s (370 × 294 Gb/s) PDM-128QAM-OFDM Transmission over 3 × 55 km SSMF using pilot-based phase noise mitigation,” in Proc. Optical Fiber Communications Conf. (OFC 2011), no. PDPB5, 2011.Google Scholar
  10. 10.
    J. Sakaguchi, Y. Awaji, N. Wada, A. Kanno, T. Kawanishi, T. Hayashi, T. Taru, T. Kobayashi, and M. Watanabe, “109 Tb/s (7 × 97 × 172 Gb/s SDM/WDM/PDM) QPSK transmission through 16.8 km homogeneous multi-core fiber,” in Proc. Optical Fiber Communications Conf. (OFC 2011), no. PDPB6, 2011.Google Scholar
  11. 11.
    D. Hillerkuss et al., "26 Tbit s−1 line-rate super-channel transmission utilizing all-optical fast Fourier transform processing," Nature Photon. 5, 364–371 (2011).CrossRefGoogle Scholar
  12. 12.
    R. Tyson, "Principles of Adaptive Optics," 3rd edition, Taylor & Francis (2010).Google Scholar
  13. 13.
    M. Tonouchi, "Cutting-edge terahertz technology," Nature Photon. 1, 97-105 (2007).CrossRefGoogle Scholar
  14. 14.
    P. H. Siegel, "Terahertz technology," IEEE Trans. Microwave Theory and Techniques 50, 910-928 (2002).CrossRefGoogle Scholar
  15. 15.
    S. Wietzke, C. Jördens, N. Krumbholz, B. Baudrit, M. Bastian, and M. Koch, "Terahertz imaging: a new non-destructive technique for the quality control of plastic weld joints," J. European Opt. Soc. 2, 07013 (2007).CrossRefGoogle Scholar
  16. 16.
    F. Rutz, M. Koch, S. Khare, M. Moneke, H. Richter, and U. Ewert, "Terahertz quality control of polymeric products," Int. Journal Infrared and Millimeter Waves 27, 547-556 (2006).CrossRefGoogle Scholar
  17. 17.
    C. Stoik, M. Bohn, and J. Blackshire, "Nondestructive evaluation of aircraft composites using transmissive terahertz time domain spectroscopy," Opt. Express 16, 17039-17051 (2008).CrossRefGoogle Scholar
  18. 18.
    M. Theuer, R. Beigang, and D. Grischkowsky, "Highly sensitive terahertz measurement of layer thickness using a two-cylinder waveguide sensor," Appl. Phys. Lett., Vol. 97, p. 071106 (2010).CrossRefGoogle Scholar
  19. 19.
    M. C. Kemp, P. F. Taday, B. E. Cole, J. A. Cluff, A. J. Fitzgerald, and W. R. Tribe, "Security applications of terahertz technology," Proc. SPIE 5070, 44-52 (2003).CrossRefGoogle Scholar
  20. 20.
    C. Jastrow, K. Munter, R. Piesiewicz, T. Kurner, M. Koch, and T. Kleine-Ostmann, “300 GHz transmission system,“ Electronics Letters 44, 213- 214 (2008).CrossRefGoogle Scholar
  21. 21.
    Fausto Rossi and Tilmann Kuhn, “Theory of ultrafast phenomena in photoexcited semiconductors,” Rev. Mod. Phys. 74, 895 (2002).Google Scholar
  22. 22.
    Ronald Ulbricht, Euan Hendry, Jie Shan, Tony F. Heinz, and Mischa Bonn, “Carrier dynamics in semiconductors studied with time-resolved terahertz spectroscopy,” Rev. Mod. Phys. 83, 543 (2011).Google Scholar
  23. 23.
    H. Alius and G. Dodel, “Amplitude-, phase-, and frequency modulation of far-infrared radiation by optical excitation of silicon,” Infrared Phys. 32, 1 (1991).CrossRefGoogle Scholar
  24. 24.
    T. Vogel, G. Dodel, E. Holzhauer, H. Salzmann, and A. Theurer, “High-speed switching of far-infrared radiation by photoionization in a semiconductor,” Appl. Opt. 31, 329-337 (1992).CrossRefGoogle Scholar
  25. 25.
    T. Nozokido, H. Minamide, and K. Mizuno, “Generation of submillimeter wave short pulses and their measurements,” RIKEN Review, No. 11, 11 (1995).Google Scholar
  26. 26.
    T. Nozokido, H. Minamide, and K. Mizuno, “Modulation of submillimeter wave radiation by laser-produced free carriers in semiconductors,” Electron. Comm. Jpn. Pt. II, 80 1–9 (1997).CrossRefGoogle Scholar
  27. 27.
    T. Okada and K. Tanaka, "Photo-designed terahertz devices," Scientific Reports 1, 121 (2011).CrossRefGoogle Scholar
  28. 28.
    S. Busch, B. Scherger, M. Scheller, and M. Koch, "Optically controlled terahertz beam steering and imaging," Opt. Express 37, 1391 (2012).Google Scholar
  29. 29.
    A. C. Warren, N. Katzenellenbogen, D. Grischkowsky, J. M. Woodall, M. R. Melloch et al., “Subpicosecond, freely propagating electromagnetic pulse generation and detection using GaAs:As epilayers,” Appl. Phys. Lett. 58, 1512 (1991).CrossRefGoogle Scholar
  30. 30.
    I. H. Libon, S. Baumgaertner, M. Hempel, N. E. Hecker, J. Feldmann, M. Koch, and P. Dawson, “An optically controllable terahertz filter,” Appl. Phys. Lett. 76, 2821 (2000).CrossRefGoogle Scholar
  31. 31.
    T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391, 667 (1998).CrossRefGoogle Scholar
  32. 32.
    H. A. Bethe, “Theory of diffraction by small holes,” Phys. Rev. 66, 163 (1944).MathSciNetMATHCrossRefGoogle Scholar
  33. 33.
    C. Janke, J. Gómez Rivas, P. Haring Bolivar, and H. Kurz, “All-optical switching of the transmission of electromagnetic radiation through subwavelength apertures,” Opt. Lett. 30, 2357 (2005).CrossRefGoogle Scholar
  34. 34.
    E. Hendry, M. J. Lockyear, J. Gomez Rivas, L. Kuipers, and M. Bonn, “Ultrafast optical switching of the THz transmission through metallic subwavelength hole arrays,” Phys. Rev. B 75, 235305 (2007).CrossRefGoogle Scholar
  35. 35.
    Smith, D. R., Padilla, W. J., Vier, D. C., Nemat-Nasser, S. C. & Schultz, S. “Composite medium with simultaneously negative permeability and permittivity,” Phys. Rev. Lett. 84, 4184-4187 (2000).CrossRefGoogle Scholar
  36. 36.
    Shelby, R. A., Smith, D. R. & Schultz, S., “Experimental verification of a negative index of refraction,” Science 292, 77-79 (2001).CrossRefGoogle Scholar
  37. 37.
    Schurig, D., Mock J. J., Justice, B. J., Cummer, S. A., Pendry, J. B., Starr, A. F. & Smith, D. R., “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314, 977-980 (2006).CrossRefGoogle Scholar
  38. 38.
    Landy, N. I., Sajuyigbe, S., Mock, J. J., Smith, D. R. & Padilla, W. J., “Perfect metamaterial absorber,” Phys. Rev. Lett. 100, 207402 (2008).CrossRefGoogle Scholar
  39. 39.
    W. J. Padilla, A. J. Taylor, C. Highstrete, Mark Lee, and R. D. Averitt, “Dynamical Electric and Magnetic Metamaterial Response at Terahertz Frequencies,” Phys, Rev. Lett. 96, 107401 (2006).CrossRefGoogle Scholar
  40. 40.
    H.-T. Chen, W.J. Padilla, J.M.O. Zide, S.R. Bank, A.C. Gossard, A.J. Taylor, and R.D. Averitt, “Ultrafast Optical Switching of Terahertz Metamaterials Fabricated on ErAs/GaAs Nanoisland Superlattices,” Opt. Lett. 32, 1620 (2007).CrossRefGoogle Scholar
  41. 41.
    A. Degiron, J. J. Mock, and D. R. Smith, “Modulating and tuning the response of metamaterials at the unit cell level,” Opt. Express 15, 1115 (2007).CrossRefGoogle Scholar
  42. 42.
    A. E. Nikolaenko, N. Papasimakis, A. Chipouline, F. D. Angelis, E. D. Fabrizio, and N. I. Zheludev, “THz bandwidth optical switching with carbon nanotube metamaterial,” Opt. Exp. 20, 6068 (2012).CrossRefGoogle Scholar
  43. 43.
    Hou-Tong Chen, John F. O'Hara, Abul K. Azad, Antoinette J. Taylor, Richard D. Averitt, David B. Shrekenhamer & Willie J. Padilla, “Experimental demonstration of frequency-agile terahertz metamaterials” Nature Photonics 2, 295 (2008).CrossRefGoogle Scholar
  44. 44.
    Nian-Hai Shen, Maria Kafesaki, Thomas Koschny, Lei Zhang, Eleftherios N. Economou, and Costas M. Soukoulis, “Broadband blueshift tunable metamaterials and dual-band switches,” Phys. Rev. B 79, 161102R (2009).CrossRefGoogle Scholar
  45. 45.
    J.-M. Manceau, N.-H. Shen, M. Kafesaki, C. M. Soukoulis, and S. Tzortzakis, “Dynamic response of metamaterials in the terahertz regime: Blueshift tunability and broadband phase modulation ,” Appl. Phys. Lett. 96, 021111 (2010).CrossRefGoogle Scholar
  46. 46.
    D. R. Chowdhury, R. Singh, J. F. O'Hara, H.-T. Chen, A. J. Taylor, and A. K. Azad, “Dynamically reconfigurable terahertz metamaterial through photo-doped semiconductor,” Appl. Phys. Lett. 99, 231101 (2011).CrossRefGoogle Scholar
  47. 47.
    T. Kleine-Ostmann, P. Dawson, K. Pierz, G. Hein, and M. Koch, “Room-temperature operation of an electrically driven terahertz modulator,” Appl. Phys. Lett. 84, 3555–3557 (2004).CrossRefGoogle Scholar
  48. 48.
    W. Knap, J. Lusakowski, T. Parenty, S. Bollaert, A. Cappy, V. V. Popov, and M. S. Shur, “Terahertz emission by plasma waves in 60 nm gate high electron mobility transistors,” Appl. Phys. Lett. 84, 2331–2333 (2004).CrossRefGoogle Scholar
  49. 49.
    W. Knap, Y. Deng, S. Rumyantsev, and M. S. Shur, “Resonant detection of subterahertz and terahertz radiation by plasma waves in submicron field-effect transistors,” Appl. Phys. Lett. 81, 4637–4639 (2002).CrossRefGoogle Scholar
  50. 50.
    M. Dyakonov and M. Shur, “Shallow water analogy for a ballistic field effect transistor: new mechanism of plasma wave generation by DC current,” Phys. Rev. Lett. 71, 2465–2468 (1993).CrossRefGoogle Scholar
  51. 51.
    M. Dyakonov and M. Shur, “Detection, mixing, and frequency multiplication of terahertz radiation by two dimensional electronic fluid,” IEEE Trans. Electron Dev. 43, 380–387 (1996).CrossRefGoogle Scholar
  52. 52.
    V. Ryzhii, I. Khmyrova, and M. Shur, “Terahertz photomixing in quantum well structures using resonant excitation of plasma oscillations,” J. Appl. Phys. 91, 1875–1881 (2002).CrossRefGoogle Scholar
  53. 53.
    H.-T. Chen, W. J. Padilla, J. M. O. Zide, A. C. Gossard, A. J. Taylor, and R. D. Averitt, “Active terahertz metamaterial devices,” Nature 444, 597 (2006).CrossRefGoogle Scholar
  54. 54.
    H. -T. Chen, J. F. O’Hara, A. K. Azad, A. J. Taylor, R. D. Averitt, D. B. Shrekenhamer, and W. J. Padilla “Experimental demonstration of frequency-agile terahertz metamaterials,” Nat. Photonics 2, 295 (2008).CrossRefGoogle Scholar
  55. 55.
    W. L. Chan, H.-T. Chen, A. J. Taylor, I. Brener, M. J. Cich, and D. M. Mittleman, “A spatial light modulator for terahertz beams,” Appl. Phys. Lett. 94, 213511 (2009).CrossRefGoogle Scholar
  56. 56.
    H.-T. Chen, W. J. Padilla, M. J. Cich, A. K. Azad, R. D. Averitt, and A. J. Taylor. “A metamaterial solid-state terahertz phase modulator,” Nat. Photonics 3, 148–151 (2009).CrossRefGoogle Scholar
  57. 57.
    L. Moller, J. Federici, A. Sinyukov, C. Xie, H. C. Lim, and R. C. Giles, “Data encoding on terahertz signals for communication and sensing,” Opt. Lett. 33, 393 (2008).CrossRefGoogle Scholar
  58. 58.
    E. A. Shaner, J. G. Cederberg, and D. Wasserman, “Electrically tunable extraordinary optical transmission gratings ,” Appl. Phys. Lett. 91, 181110 (2007).CrossRefGoogle Scholar
  59. 59.
    Hou-Tong Chen, Hong Lu, Abul K. Azad, Richard D. Averitt, Arthur C. Gossard, Stuart A. Trugman, John F. O'Hara, and Antoinette J. Taylor, "Electronic control of extraordinary terahertz transmission through subwavelength metal hole arrays," Opt. Express 16, 7641-7648 (2008).CrossRefGoogle Scholar
  60. 60.
    Jie Shu, Ciyuan Qiu, Victoria Astley, Daniel Nickel, Daniel M. Mittleman, and Qianfan Xu, "High-contrast terahertz modulator based on extraordinary transmission through a ring aperture," Opt. Express 19, 26666-26671 (2011).CrossRefGoogle Scholar
  61. 61.
    O. Paul, C. Imhof, B. Lagel, S. Wolff, J. Heinrich, S. Hofling, A. Forchel, R. Zengerle, R. Beigang, and M. Rahm, „Polarization-independent active metamaterial for high-frequency terahertz modulation,” Opt. Express 17, 819 (2009).Google Scholar
  62. 62.
    H.-T. Chen, S. Palit, T. Tyler, C. M. Bingham, J. M. O. Zide, J. F. O'Hara, D. R. Smith, A. C. Gossard, R. D. Averitt, W. J. Padilla, N. M. Jokerst, and A. J. Taylor, “Hybrid metamaterials enable fast electrical modulation of freely propagating terahertz waves,” Appl. Phys. Lett. 93, 091117 (2008).CrossRefGoogle Scholar
  63. 63.
    D. Shrekenhamer,1 A. C. Strikwerda, C. Bingham, R. D. Averitt,S. Sonkusale, and W.J. Padilla, "High speed terahertz modulation from metamaterials with embedded high electron mobility transistors," Opt., Express 19, 9968 (2011).Google Scholar
  64. 64.
    L. Ju, B. Geng, J. Horng, C. Girit, M. Martin, Z. Hao, H. A. Bechtel, X. Liang, A. Zettl, Y. R. Shen, and F. Wang, “Graphene plasmonics for tunable terahertz metamaterials,” Nature Nanotechnology 6, 630-634 (2011).CrossRefGoogle Scholar
  65. 65.
    B. Sensale-Rodriguez, T. Fang, R. Yan, M. M. Kelly, D. Jena, L. Liu, and H. G. Xing, “Unique prospects for graphene-based terahertz modulators,” Appl. Phys. Lett. 99, 113104 (2011).CrossRefGoogle Scholar
  66. 66.
    C.-C. Lee, S. Suzuki, W. Xie, and T. R. Schibli, “Broadband graphene electro-optic modulators with sub-wavelength thickness,” Optics Express 20, 5265-5269 (2012).Google Scholar
  67. 67.
    M. Liu, X. Yin, E. Ulin-Avila, B. Geng, T. Zentgraf, L. Ju, F. Wang, and X. Zhang, “A graphene-based broadband optical modulator,” Nature 474, 64-67 (2011).CrossRefGoogle Scholar
  68. 68.
    B. Sensale-Rodriguez, R. Yan, M. M. Kelly, T. Fang, K. Tahy, W. S. Hwang, D. Jena, L. Liu, and H. G. Xing, “Broadband graphene terahertz modulators enabled by intraband transitions,” Nature Communications 3, 1-7 (2012).CrossRefGoogle Scholar
  69. 69.
    M. J. Allen, V. C. Tung, and R. B. Kaner, “Honeycomb carbon: A review of graphene,” Chemical Reviews 110, 132145 (2010).CrossRefGoogle Scholar
  70. 70.
    A. K. Geim, “Graphene: Status and prospects,” Science 324, 1530-1534 (2009).CrossRefGoogle Scholar
  71. 71.
    Seung Hoon Lee, Muhan Choi, Teun-Teun Kim, Seungwoo Lee, Ming Liu, Xiaobo Yin, Hong Kyw Choi, Seung S. Lee, Choon-Gi Choi, Sung-Yool Choi, Xiang Zhang, Bumki Min, "Switching teraherz waves with gate-controlled active graphene metamaterials," arXiv:1203.0743v1 (2012), Nature Mat. 11, 936–941 (2012). doi:10.1038/nmat3433.
  72. 72.
    J. Gomez Rivas, M. Kuttge, H. Kurz, P. Haring Bolivar, and J. A. Sanchez-Gil, “Low-frequency active surface plasmon optics on semiconductors,” Appl. Phys. Lett. 88, 082106 (2006).CrossRefGoogle Scholar
  73. 73.
    P. Kuzel and F. Kadlec, “Tunable structures and modulators for THz light,” Comptes Rendus Physique 9, 197-214 (2008).CrossRefGoogle Scholar
  74. 74.
    J. Han and A. Lakhtakia, “Semiconductor split-ring resonators for thermally tunable, terahertz metamaterials,” J. Modern Optics 56, 554_557 (2009).Google Scholar
  75. 75.
    J. Zhu, J. Han, Z. Tian, J. Gu, Z. Chen, and W. Zhang, “Thermal broadband tunable terahertz metamaterials,” Opt. Commun. 284, 3129_3133 (2011).Google Scholar
  76. 76.
    R. Singh, A. K. Azad, Q. X. Jia, A. J. Taylor, and H.-T. Chen, “Thermal tunability in terahertz metamaterials fabricated on strontium titanate single-crystal substrates,” Opt. Lett. 36, 1230-1232 (2011).CrossRefGoogle Scholar
  77. 77.
    T. Driscoll, H. T. Kim, B. G. Chae, B. J. Kim, Y. W. Lee, N. M. Jokerst, S. Palit, D. R. Smith, M. D. Ventra, and D. N. Basov, “Memory metamaterials,” Science 325, 5947 (2009).CrossRefGoogle Scholar
  78. 78.
    T. Driscoll, S. Palit, M. M. Qazilbash, M. Brehm, F. Keilmann, B.-G. Chae, S.-J. Yun, H.-T. Kim, S. Y. Cho, N. M. Jokerst, D. R. Smith, and D. N. Basov, “Dynamic tuning of an infrared hybrid-metamaterial resonance using vanadium dioxide,” Appl. Phys. Lett. 93, 024101 (2008).CrossRefGoogle Scholar
  79. 79.
    M. Seo, J. Kyoung, H. Park, S. Koo, H.-S. Kim, H. Bernien, B. J. Kim, J. H. Choe, Y. H. Ahn, H.-T. Kim, N. Park, Q.-H. Park, K. Ahn, and D.-S. Kim, “Active terahertz nanoantennas based on VO2 phase transition,” Nano Lett. 10, 2064_2068 (2010).Google Scholar
  80. 80.
    M. D. Gold_am, T. Driscoll, B. Chapler, O. Khatib, N. M. Jokerst, S. Palit, D. R. Smith, B.-J. Kim, G. Seo, H.-T. Kim, M. D. Ventra, and D. N. Basov, Reconfigurable gradient index using VO2 memory metamaterials,” Appl. Phys. Lett. 99, 044103 (2011).Google Scholar
  81. 81.
    Q.-Y. Wen, H.-W. Zhang, Q.-H. Yang, Y.-S. Xie, K. Chen, and Y.-L. Liu, “Terahertz metamaterials with VO2 cut-wires for thermal tunability,” Appl. Phys. Lett. 97, 021111 (2010).CrossRefGoogle Scholar
  82. 82.
    H.-T. Chen, H. Yang, R. Singh, J. F. O'Hara, A. K. Azad, S. A. Trugman, Q. X. Jia, and A. J. Taylor, “Tuning the resonance in high-temperature superconducting terahertz metamaterials,” Phys. Rev. Lett. 105, 247402 (2010).CrossRefGoogle Scholar
  83. 83.
    J. Wu, B. Jin, Y. Xue, C. Zhang, H. Dai, L. Zhang, C. Cao, L. Kang, W. Xu, J. Chen, and P. Wu, “Tuning of superconducting niobium nitride terahertz metamaterials,” Opt. Express 19, 12021_1202 (2011).Google Scholar
  84. 84.
    B. Jin, C. Zhang, S. Engelbrecht, A. Pimenov, J. Wu, Q. Xu, C. Cao, J. Chen, W. Xu, L. Kang, and P. Wu, “Low loss and magnetic _eld-tunable superconducting terahertz metamaterial,” Opt. Express 18, 17504_17509 (2010).Google Scholar
  85. 85.
    H. Tao, A.C. Strikwerda, K. Fan, W.J. Padilla, X. Zhang, R.D. Averitt, “Reconfigurable Terahertz Metamaterials,” Phys. Rev. Lett. 103, 147401 (2009).CrossRefGoogle Scholar
  86. 86.
    Hu Tao, W. J. Padilla, X. Zhang, R. D. Averitt, “Recent Progress in Electromagnetic Metamaterial Devices for Terahertz Applications”, (invited) IEEE J. Sel. Top. Quan. Opt. 17, 1077-260 (2011).Google Scholar
  87. 87.
    M. Golosovsky, Y. Neve-Oz, and D. Davidov, “Magnetic-field-tunable photonic stop band in a threedimensional array of conducting spheres,” Phys. Rev. B 71, 195105 (2005).CrossRefGoogle Scholar
  88. 88.
    J. Han, A. Lakhtakia, and C.-W. Qiu, “Terahertz metamaterials with semiconductor split-ring resonators for magnetostatic tunability,” Opt. Express 16, 14390-14396 (2008).CrossRefGoogle Scholar
  89. 89.
    B. Jin, C. Zhang, S. Engelbrecht, A. Pimenov, J. Wu, Q. Xu, C. Cao, J. Chen, W. Xu, L. Kang, and P. Wu, “Low loss and magnetic field-tunable superconducting terahertz metamaterial,” Opt. Express 18, 17504-17509 (2010).CrossRefGoogle Scholar
  90. 90.
    F. Zhang, Q. Zhao, L. Kang, D. P. Gaillot, X. Zhao, J. Zhou, and D. Lippens, “Magnetic control of negative permeability metamaterials based on liquid crystals,” Appl. Phys. Lett. 92, 193104 (2008).CrossRefGoogle Scholar
  91. 91.
    M. Gorkunov and M. Lapine, “Tuning of a nonlinear metamaterial band gap by an external magnetic field,” Phys. Rev. B 70, 235109 (2004).CrossRefGoogle Scholar
  92. 92.
    B. Ozbey and O. Aktas, “Continuously tunable terahertz metamaterial employing magnetically actuated cantilevers,” Opt. Express 19, 5741-5752 (2011).CrossRefGoogle Scholar
  93. 93.
    L. Kang, Q. Zhao, H. Zhao, and J. Zhou, “Magnetic tuning of electrically resonant metamaterial with inclusion of ferrite,” Appl. Phys. Lett. 93, 171909 (2008).CrossRefGoogle Scholar
  94. 94.
    L. Kang, Q. Zhao, H. Zhao, and J. Zhou, “Ferrite-based magnetically tunable left-handed metamaterial composed of srrs and wires,” Opt. Express 16, 17269-17275 (2008).CrossRefGoogle Scholar
  95. 95.
    H. Zhao, J. Zhou, L. Kang, and Q. Zhao, “Tunable two-dimensional left-handed material consisting of ferrite rods and metallic wires,” Opt. Express 17, 13373-13380 (2009).CrossRefGoogle Scholar
  96. 96.
    L. Kang, Q. Zhao, H. Zhao, and J. Zhou, “Magnetically tunable negative permeability metamaterial composed by split ring resonators and ferrite rods,” Opt. Express 16, 8825 (2008).CrossRefGoogle Scholar
  97. 97.
    I. V. Shadrivov, A. B. Kozyrev, D. W. van der Weide, and Y. S. Kivshar, “Nonlinear magnetic metamaterials,“ Opt. Express 16, 20266_20271 (2008).Google Scholar
  98. 98.
    B. Wang, J. Zhou, T. Koschny, and C. Soukoulis, "Nonlinear properties of split-ring resonators," Opt. Express 16, 16058-16063 (2008).CrossRefGoogle Scholar
  99. 99.
    D. Huang, E. Poutrina, and D. R. Smith, “Analysis of the power dependent tuning of a varactor-loaded metamaterial at microwave frequencies,” Appl. Phys. Lett. 96, 104104 (2010).CrossRefGoogle Scholar
  100. 100.
    J. D. Joannopoulos, S. G. Johnson, R. D. Meade, and J. N. Winn, Photonic Crystals: Molding the Flow of Light, second edition (Princeton Univ. Press, 2008).Google Scholar
  101. 101.
    E. Özbay, B. Temelkuran, “Reflection properties and defect formation in photonic crystals,” Appl. Phys. Lett., 69, 743(1996).CrossRefGoogle Scholar
  102. 102.
    H. Němec, L. Duvillaret, F. Quemeneur, and P. Kužel, “Defect modes caused by twinning in one-dimensional photonic crystals,” J. Opt. Soc. Am. B, 21, 548-553 (2004).CrossRefGoogle Scholar
  103. 103.
    K. Sakoda, Optical Properties of Photonic Crystals, Springer, Berlin, 2001.Google Scholar
  104. 104.
    L. Fekete, F. Kadlec, H. Němec, P. Kužel, “Fast one-dimensional photonic crystal modulators for the terahertz range,” Opt. Express, 15, 8898-8912 (2007).CrossRefGoogle Scholar
  105. 105.
    L. Fekete, F. Kadlec, P. Kužel, and H. Němec, “Ultrafast opto-terahertz photonic crystal modulator,” Opt. Lett. 32, 680 (2007).CrossRefGoogle Scholar
  106. 106.
    H. Chen, J. Su, J. Wang, X. Zhao, “Optically-controlled high-speed terahertz wave modulator based on nonlinear photonic crystals,” Opt. Express, 19, 3599-3603 (2011).CrossRefGoogle Scholar
  107. 107.
    J. Li, “Terahertz modulator using photonic crystals,” Optics Communications, 269(1), 98-101 (2007).CrossRefGoogle Scholar
  108. 108.
    J. Li, J. He, Z. Hong, “Terahertz wave switch based on silicon photonic crystals,” Appl. Opt., 46(22), 5034-5037 (2007).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2012

Authors and Affiliations

  1. 1.Department of Physics and Research Center OPTIMASUniversity of KaiserslauternKaiserslauternGermany
  2. 2.Fraunhofer Institute for Physical Measurement Techniques IPMFreiburgGermany
  3. 3.Centre for THz ResearchChina Jiliang UniversityHangzhouChina
  4. 4.Department of PhysicsBoston CollegeChestnut HillUSA

Personalised recommendations