Principles of Impedance Matching in Photoconductive Antennas

Article

Abstract

The principles of impedance matching in photoconductive antennas in comparison with conventional antennas are described. Because of the optical nature of the input signal in photoconductive antennas and the dependence of photoconductor conductance on the optical pump power, the optimum photoconductor impedance is not necessarily determined by the complex conjugate of antenna impedance. Using the equivalent circuit model of photoconductive antennas, the photoconductor impedance optimization criteria are evaluated according to the photoconductive antenna structure and operational settings.

Keywords

Photoconductive antenna Impedance matching 

References

  1. 1.
    D. H. Auston, K. P. Cheung, and P. R. Smith, Appl. Phys. Lett. 45, 284-286 (1984).CrossRefGoogle Scholar
  2. 2.
    S. Preu, G. H. Dohler, S. Malzer, L. J. Wang, and A. C. Gossard, J. Appl. Phys. 109, 061301 (2011).CrossRefGoogle Scholar
  3. 3.
    P. R. Smith, D. H. Auston, and M. C. Nuss, IEEE J. Quantum Electron. 24, 255 (1988).CrossRefGoogle Scholar
  4. 4.
    M. van Exter, and D. Grischkowsky, IEEE Microwave Theory Technol. 38, 1684 (1990).CrossRefGoogle Scholar
  5. 5.
    B. B. Hu and M. C. Nuss, Opt. Lett. 20, 1716-1718 (1995).CrossRefGoogle Scholar
  6. 6.
    D. M. Mittleman, R. H. Jacobsen, and M. C. Nuss, IEEE Journal on Selected Topics in Quantum Electronics 2, 679-692 (1996).CrossRefGoogle Scholar
  7. 7.
    A. Markelz, S. Whitmire, J. Hillebrecht, and R. Birge, Physics in Medicine and Biology 47, 3739-3805 (2002)CrossRefGoogle Scholar
  8. 8.
    D. D. Arnone, C. Ciesla, and M. Pepper, Physics World 13, 35-40 (2000).Google Scholar
  9. 9.
    J. A. Zeitler, P. F. Taday, D. A. Newnham, M. Pepper, K. C. Gordon, and T. Rades, Journal of Pharmacy and Pharmacology 59, 209-223 (2007).CrossRefGoogle Scholar
  10. 10.
    D. G. Rowe, Nature Photonics 1, 75-77 (2007).CrossRefGoogle Scholar
  11. 11.
    M. C. Kemp, P. F. Taday, B. E. Cole, J. A. Cluff, A. J. Fitzgerald, and W. R. Tribe, Proc. SPIE 5070, 44-52 (2003).CrossRefGoogle Scholar
  12. 12.
    S. M. Duffy, S. Verghese, K. A. McIntosh, A. Jackson, A. C. Gossard, and S. Matsuura, IEEE Trans. Microwave Theory Tech. 49, 1032-1038 (2001).CrossRefGoogle Scholar
  13. 13.
    E. R. Brown, International Journal of High Speed Electronics and Systems 13, 497-545 (2003).CrossRefGoogle Scholar
  14. 14.
    E. R. Brown, F. W. Smith, and K. A. McIntosh, J. Appl. Phys. 73, 1480-1484 (1993).CrossRefGoogle Scholar
  15. 15.
    S. Gregory, C. Baker, W. R. Tribe, I. V. Bradley, M. J. Evans, E. H. Linfield, A. G. Davies, and M. Missous, IEEE J. Quantum Electron. 41, 717-728 (2005).CrossRefGoogle Scholar
  16. 16.
    F. T. Ulaby, Fundamentals of Applied Electromagnetics, Prentice Hall, Upper Saddle River, New Jersey (1997).Google Scholar
  17. 17.
    G. C. Loata, M. D. Thomson, T. Löffler, and H. G. Roskos, Appl. Phys. Lett. 91, 232506 (2007).CrossRefGoogle Scholar
  18. 18.
    M. B. Gray, D. A. Shaddock, C. C. Harb, and H.-A. Bachor, Review of Scientific Instruments 69, 3755-3762 (1998).CrossRefGoogle Scholar
  19. 19.
    P. Uhd Jepsen, R. H. Jacobsen, and S. R. Keiding, J. Opt. Soc. Am. B 13, 2424-2436 (1996).CrossRefGoogle Scholar
  20. 20.
    Z. Piao, M. Tani, and K. Sakai, Jpn. J. Appl. Phys. 39, 96-100 (2000).CrossRefGoogle Scholar
  21. 21.
    K. Ezdi, B. Heinen, C. Jordens, N. Vieweg, N. Krumbholz, R. Wilk, M. Mikulics, and M. Koch, J. European Opt. Soc. 4, 09001 (2009).CrossRefGoogle Scholar
  22. 22.
    E. R. Brown, A. W. M. Lee, B. S. Navi and J. E. Bjarnason, Microwave and Optical Technology Lett. 48, 524-529 (2006).CrossRefGoogle Scholar
  23. 23.
    Y. Huo, G. W. Taylor, and R. Bansal, Int. J. Infrared and Millimeter Waves 23, 819 (2002).CrossRefGoogle Scholar
  24. 24.
    K. Ezdi, M. N. Islam,Y. A. N. Reddy, C. Jördens, A. Enders, M. Koch, Proc. SPIE 6194, 61940 G (2006).CrossRefGoogle Scholar
  25. 25.
    S. E. Ralph and D. Grischkowsky, Appl. Phys. Lett. 59, 1972-1974 (1991).CrossRefGoogle Scholar
  26. 26.
    M. Awad, M. Nagel, H. Kurz, J. Herfort, and L. Ploog, Appl. Phys. Lett. 91, 181124 (2007).CrossRefGoogle Scholar
  27. 27.
    M. Beck, H. Schafer, G. Klatt, J. Demsar, S. Winnerl, M. Helm, and T. Dekorsy, Opt. Express 18, 9251-9257 (2010).CrossRefGoogle Scholar
  28. 28.
    M. Jarrahi, and T. H. Lee, Proc. IEEE International Microwave Symposium, 391-394 (2008).Google Scholar
  29. 29.
    M. Jarrahi, Photon. Technol. Lett. 21, 2019620 (2009).CrossRefGoogle Scholar
  30. 30.
    T. Hattori, K. Egawa, S. I. Ookuma, and T. Itatani, Japanese J. Appl. Phys. 45, L422-L424 (2006).CrossRefGoogle Scholar
  31. 31.
    J. H. Kim, A. Polley, and S. E. Ralph, Opt. Lett. 30, 2490-2492 (2005).CrossRefGoogle Scholar
  32. 32.
    H. Roehle,R. J. B. Dietz, H. J. Hensel, J. Böttcher, H. Künzel, D. Stanze, M. Schell, and B. Sartorius, Opt. Express 18, 2296-2301 (2010).CrossRefGoogle Scholar
  33. 33.
    Z. D. Taylor, E. R. Brown, J. E. Bjarnason, M. P. Hanson, and A. C. Gossard, Opt. Lett. 31, 1729-1731 (2006).CrossRefGoogle Scholar
  34. 34.
    C. W. Berry, M. Jarrahi, New Journal of Physics Focus Issue on Plasmonics (2012).Google Scholar
  35. 35.
    B-Y. Hsieh, M. Jarrahi, J. Appl. Phys. 109, 084326 (2011).Google Scholar
  36. 36.
    B-Y. Hsieh, M. Jarrahi, Special Issue of "Optics in 2011" Optics & Photonics News 22, 48 (2011).Google Scholar
  37. 37.
    C.W. Berry, M. Jarrahi, Proc. Conf. Lasers and Electro-Optics CFI2, San Jose, CA, May 16-21 (2010).Google Scholar
  38. 38.
    C. W. Berry, M. Jarrahi, Proc. Int. Conf. Infrared, Millimeter, and Terahertz Waves, Houston, TX, 2-7 Oct (2011).Google Scholar
  39. 39.
    C. W. Berry, M. Jarrahi, Proc. Conf. Lasers and Electro-Optics CF2M.1, San Jose, CA, 6-11 May (2012).Google Scholar

Copyright information

© Springer Science+Business Media New York 2012

Authors and Affiliations

  1. 1.Electrical Engineering and Computer Science DepartmentUniversity of Michigan, Ann ArborAnn ArborUSA

Personalised recommendations