Numerical Study of Self-Complementary Antenna Characteristics on Substrate Lenses at Terahertz Frequency

  • Truong Khang Nguyen
  • Thi Anh Ho
  • Haewook Han
  • Ikmo Park
Article

Abstract

This paper presents a numerical study of self-complementary antennas on substrate lenses made of high-permittivity dielectric material. Bowtie, logarithmically periodic, and logarithmic spiral antennas with the same outer and inner dimensions were selected for study, and their overall performances were compared in the terahertz band at frequencies up to 5.0 THz. The resonance and radiation characteristics of the three antennas were investigated in terms of input impedance, directivity, and radiation efficiency, using a full electromagnetic simulator. This study provides useful guidelines and partially solves the difficult problems of choosing the proper feed and optimizing the lens structure for a THz broadband integrated lens antenna.

Keywords

Terahertz antenna Integrated lens antenna Self-complementary antenna Bowtie antenna Log-periodic antenna Log-spiral antenna Substrate lens 

Notes

Acknowledgment

This work was supported by a National Research Foundation of Korea grant funded by the Korean Government (grant code: 2009-0083512)

References

  1. 1.
    E. C. Jordan, G. A. Deschamps, J. D. Dyson, and P. E. Mayes, “Developments in broadband antennas,” IEEE Spectrum, vol. 1, pp. 58 − 71, Apr. 1964.Google Scholar
  2. 2.
    R. H. DuHamel and F. R. Ore, “Logarithmically periodic antenna design,” Tech. Rep. CTR-198, Collins Radio Co., Cedar Rapids, IA, Mar. 1958.Google Scholar
  3. 3.
    J. L. Drewniak, P. Mayes, D. Tanner, and R. Waller, “A log-spiral, radiating-line antenna,” IEEE AP-S Int. Symp. Digest, pp. 773 − 776, June 1986.Google Scholar
  4. 4.
    M. M. Gitin, F. W. Wise, G. Arjavalingam, Y. Pastol, and R. C. Compton, “Broad-band characterization of millimeter-wave log-periodic antennas by photoconductive sampling,” IEEE Trans. Antennas Propagat., vol. 42, no. 3, pp. 335–339, Mar. 1994.CrossRefGoogle Scholar
  5. 5.
    E. R. Brown, A. W. M. Lee, B. S. Navi, and J. E. Bjarnason, “Characterization of a planar self-complementary square-spiral antenna in the THz region,” Microwave Opt. Technol. Lett., vol. 48, no. 3, pp. 524 − 529, 2006.CrossRefGoogle Scholar
  6. 6.
    F. J. Gonzalez and G. D. Boreman, “Comparison of dipole, bowtie, spiral and log-periodic IR antennas,” Infrared Phys. Tech., vol. 46, pp. 418 − 428, 2005.CrossRefGoogle Scholar
  7. 7.
    E. N. Grossman, J. E. Sauvageau, and D. G. McDonald, “Lithographic spiral antennas at short wavelengths,” Appl. Phys. Lett., vol. 59, no. 25, pp. 3225 − 3227, Dec. 1991.CrossRefGoogle Scholar
  8. 8.
    J. Alda, J. Rico-García, J. López-Alonso, and G. Boreman, “Optical antennas for nano-photonic applications,” Nanotechnology, vol. 16, pp. S230–S234, Mar. 2005.CrossRefGoogle Scholar
  9. 9.
    D. B. Rutledge and M. S. Muha, "Imaging antenna arrays," IEEE Trans. Antennas Propagat., vol. 30, no. 7, pp. 535 − 540, July 1982.CrossRefGoogle Scholar
  10. 10.
    G. Godi, R. Sauleau, and D, Thouroude, “Performance of reduced size substrate lens antennas for millimeter-wave communications,” IEEE Trans. Antennas Propagat., vol. 53, no. 4, pp. 1278–1286 , Apr. 2005.CrossRefGoogle Scholar
  11. 11.
    A. V. Boriskin and R. Sauleau, “Drastic influence of the half-bowtie resonances on the focusing and collimating capabilities of 2-D extended hemielliptical and hemispherical dielectric lens,” J. Opt. Soc. Am. A, vol. 27, no. 11, pp. 2442–2449, Nov. 2010.CrossRefGoogle Scholar
  12. 12.
    W. Miao, Y. Delorme, F. Dauplay, G. Beaudin, Q. J. Yao, and S. C. Shi, “Simulation of an integrated log-spiral antenna at terahertz,” Antennas, Propagation and EM Theory, 2008. ISAPE 2008. 8th International Symposium on, pp. 58–61, Nov. 2008.Google Scholar
  13. 13.
    R. Geurts, “Broadband feeds for integrated lens antennas,” M.S. Thesis, Eindhoven University of Technology, Netherlands, 2002.Google Scholar
  14. 14.
    J. D. Dyson, “The unidirectional equiangular spiral antenna,” Trans. IRE, AP-7, pp. 329–340, Oct. 1959.Google Scholar
  15. 15.
    CST Microwave Studio 2011, CST GmbH, http://www.cst.com
  16. 16.
    V. H. Rumsey, Frequency Independent Antennas, Academic Press, New York, 1966.Google Scholar
  17. 17.
    A. Scheuring, S. Wuensch, and M. Siegel, “A novel analytical model of resonance effects of log-periodic planar antennas,” IEEE Trans. Antennas Propagat., vol. 57, no. 11, pp. 3482–3488, Nov. 2009.CrossRefGoogle Scholar
  18. 18.
    R. C. Compton, R. C. McPhedran, Z. Popovic, G. M. Rebeiz, P. P. Tong, and D. B. Rutledge, “Bow-tie antennas on a dielectric half-space: Theory and experiment,” IEEE Trans. Antennas Propagat., vol. 35, no. 2, pp. 622–631, Feb. 1987.CrossRefGoogle Scholar
  19. 19.
    A.V. Boriskin, A.I. Nosich, S.V. Boriskina, T.B. Benson, P. Sewell, and A. Altintas, “Lens or resonator ? Electromagnetic behavior of an extended hemielliptical lens for a sub-mm wave receiver,” Microwave Opt. Technol. Lett., vol. 43, no. 6, pp. 515–518, June 2004.CrossRefGoogle Scholar
  20. 20.
    A. D. Semenov, H. Richter, H.-W. Hubers, B. Gunther, A. Smirnov, L. S. Il’in, M. Siegel, and J. P. Karamarkovic, “Terahertz performance of integrated lens antennas with a hot-electron bolometer,” IEEE Trans. Microw. Theory Tech., vol. 55, no. 2, pp. 239–247, 2007.CrossRefGoogle Scholar
  21. 21.
    J. Van Rudd and D. M. Mittleman, “Influence of substrate-lens design in terahertz time-domain spectroscopy,” J. Opt. Soc. Am. B, vol. 19, pp. 319-329, 2002.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Truong Khang Nguyen
    • 1
  • Thi Anh Ho
    • 1
  • Haewook Han
    • 2
  • Ikmo Park
    • 1
  1. 1.School of Electrical and Computer EngineeringAjou UniversitySuwonKorea
  2. 2.Department of Electrical and Computer EngineeringPohang University of Science and TechnologyPohangKorea

Personalised recommendations