Discrete Terahertz Beam Steering with an Electrically Controlled Liquid Crystal Device

  • Benedikt Scherger
  • Marco Reuter
  • Maik Scheller
  • Kristian Altmann
  • Nico Vieweg
  • Roman Dabrowski
  • Jason A. Deibel
  • Martin Koch


We present an electronic beam switching/steering device for operation at THz frequencies. The propagation direction of the THz beam is switched via electronic manipulation of the refractive index of a liquid crystal. The design of the steering device and the parameters of the liquid crystal are described and angle-dependent THz-TDS measurements of the beam steering are reported. This device is able to deflect the propagation direction of the THz beam by 6.3 °. This particular device approach offers a viable option for beam steering/switching in various THz applications including fiber switches, scanning imagers, and free-space communication systems in which the detector or emitter is in motion.


THz spectroscopy Quasi-optics Liquid Crystal (LC) 



Benedikt Scherger acknowledges financial support from the Friedrich Ebert Stiftung. Nico Vieweg likes to express his appreciation to the Studienstiftung des deutschen Volkes.


  1. 1.
    T. Kleine-Ostmann and T. Nagatsuma, “A review on terahertz communications research,” J. Infrared Millim. Te., pp. 1–29, 2011.Google Scholar
  2. 2.
    R. Piesiewicz, T. Kleine-Ostmann, N. Krumbholz, D. Mittleman, M. Koch, J. Schoebel, and T. Kurner, “Short-range ultra-broadband terahertz communications: Concepts and perspectives,” IEEE Antenn. Propag. M., vol. 49, no. 6, pp. 24–39, 2007.CrossRefGoogle Scholar
  3. 3.
    M. Theuer and J. Melinger, “High resolution waveguide terahertz time-domain spectroscopy,” J. Infrared Millim. Te., pp. 1–18, 2011.Google Scholar
  4. 4.
    A. True, K. Schroeck, T. French, and C. Schmuttenmaer, “Terahertz spectroscopy of histidine enantiomers and polymorphs,” J. Infrared Millim. Te., vol. 32, no. 5, pp. 691–698, 2011.CrossRefGoogle Scholar
  5. 5.
    P. Jepsen and H. Merbold, “Terahertz reflection spectroscopy of aqueous NaCl and LiCl solutions,” J. Infrared Millim. Te., vol. 31, no. 4, pp. 430–440, 2010.Google Scholar
  6. 6.
    N. Vieweg, M. Shakfa, B. Scherger, M. Mikulics, and M. Koch, “THz Properties of Nematic Liquid Crystals,” J. Infrared Millim. Te., vol. 31, no. 11, pp. 1312–1320, 2010.CrossRefGoogle Scholar
  7. 7.
    J. Laib and D. Mittleman, “Temperature-dependent terahertz spectroscopy of liquid n-alkanes,” J. Infrared Millim. Te., vol. 31, no. 9, pp. 1015–1021, 2010.CrossRefGoogle Scholar
  8. 8.
    S. Katletz, M. Pfleger, H. Pühringer, N. Vieweg, B. Scherger, B. Heinen, M. Koch, and K. Wiesauer, “Efficient terahertz en-face imaging,” Opt. Express, vol. 19, no. 23, pp. 23042–23053, 2011.CrossRefGoogle Scholar
  9. 9.
    T. Shibuya, T. Suzuki, K. Suizu, and K. Kawase, “Non-destructive characterization of soot in exhaust filters using millimeter-wave imaging,” J. Infrared Millim. Te., vol. 32, no. 5, pp. 716–721, 2011.CrossRefGoogle Scholar
  10. 10.
    M. Scheller, J. Yarborough, J. Moloney, M. Fallahi, M. Koch, and S. Koch, “Room temperature continuous wave milliwatt terahertz source,” Opt. Express, vol. 18, no. 26, pp. 27112–27117, 2010.CrossRefGoogle Scholar
  11. 11.
    W. Knap, S. Nadar, H. Videlier, S. Boubanga-Tombet, D. Coquillat, N. Dyakonova, F. Teppe, K. Karpierz, J. Lusakowski, M. Sakowicz, I. Kasalynas, D. Seliuta, G. Valusis, T. Otsuji, Y. Meziani, A. El Fatimy, S. Vandenbrouk, K. Madjour, D. Théron, and C. Gaquière, “Field effect transistors for terahertz detection and emission,” J. Infrared Millim. Te., vol. 32, pp. 618–628, 2011.CrossRefGoogle Scholar
  12. 12.
    B. Scherger, C. Jördens, and M. Koch, “Variable-focus terahertz lens,” Opt. Express, vol. 19, no. 5, pp. 4528–4535, 2011.CrossRefGoogle Scholar
  13. 13.
    B. Scherger, M. Scheller, C. Jansen, M. Koch, and K. Wiesauer, “Terahertz lenses made by compression molding of micropowders,” Appl. Opt., vol. 50, no. 15, pp. 2256–2262, 2011.CrossRefGoogle Scholar
  14. 14.
    J. Liu, R. Mendis, and D. Mittleman, “The transition from a TEM-like mode to a plasmonic mode in parallel-plate waveguides,” Appl. Phys. Lett., vol. 98, p. 231113, 2011.CrossRefGoogle Scholar
  15. 15.
    C. Jördens, K. Chee, I. Al-Naib, I. Pupeza, S. Peik, G. Wenke, and M. Koch, “Dielectric fibres for low-loss transmission of millimetre waves and its application in couplers and splitters,” J. Infrared Millim. Te., vol. 31, no. 2, pp. 214–220, 2010.Google Scholar
  16. 16.
    S. Saha, Y. Ma, J. Grant, A. Khalid, and D. Cumming, “Low-loss terahertz artificial dielectric birefringent quarter-wave plates,” IEEE Photonic. Tech. L., vol. 22, no. 2, pp. 79–81, 2010.CrossRefGoogle Scholar
  17. 17.
    B. Scherger, M. Scheller, N. Vieweg, S. T. Cundiff, and M. Koch, “Paper terahertz wave plates,” Opt. Express, vol. 19, no. 25, pp. 24884–24889, 2011.CrossRefGoogle Scholar
  18. 18.
    Z. Ghattan, T. Hasek, R. Wilk, M. Shahabadi, and M. Koch, “Sub-terahertz on-off switch based on a two-dimensional photonic crystal infiltrated by liquid crystals,” Opt. Commun., vol. 281, no. 18, pp. 4623–4625, 2008.CrossRefGoogle Scholar
  19. 19.
    T. Tsai, C. Chen, R. Pan, C. Pan, and X. Zhang, “Electrically controlled room temperature terahertz phase shifter with liquid crystal,” IEEE Microw. Wirel. Co., vol. 14, no. 2, pp. 77–79, 2004.CrossRefGoogle Scholar
  20. 20.
    H. Chen, W. Padilla, J. Zide, A. Gossard, A. Taylor, and R. Averitt, “Active terahertz metamaterial devices,” Nat., vol. 444, no. 7119, pp. 597–600, 2006.CrossRefGoogle Scholar
  21. 21.
    N. Vieweg, N. Born, I. Al-Naib, and M. Koch, “Electrically tunable terahertz notch filters,” J. Infrared Millim. Te., pp. 1–6, 2012.Google Scholar
  22. 22.
    H. Zhang, P. Guo, P. Chen, S. Chang, and J. Yuan, “Liquid-crystal-filled photonic crystal for terahertz switch and filter,” JOSA B, vol. 26, no. 1, pp. 101–106, 2009.CrossRefGoogle Scholar
  23. 23.
    R. Wilk, N. Vieweg, O. Kopschinski, and M. Koch, “Liquid crystal based electrically switchable Bragg structure for THz waves,” Opt. Express, vol. 17, no. 9, pp. 7377–7382, 2009.CrossRefGoogle Scholar
  24. 24.
    D. Werner, D. Kwon, I. Khoo, A. Kildishev, and V. Shalaev, “Liquid crystal clad near-infrared metamaterials with tunable negative-zero-positive refractive indices,” Opt. Express, vol. 15, no. 6, pp. 3342–3347, 2007.CrossRefGoogle Scholar
  25. 25.
    R. Kersting, G. Strasser, and K. Unterrainer, “Terahertz phase modulator,” Electron. Lett., vol. 36, no. 13, pp. 1156–1158, 2000.CrossRefGoogle Scholar
  26. 26.
    H. Chen, W. Padilla, M. Cich, A. Azad, R. Averitt, and A. Taylor, “A metamaterial solid-state terahertz phase modulator,” Nat. photonics, vol. 3, no. 3, pp. 148–151, 2009.CrossRefGoogle Scholar
  27. 27.
    T. Kleine-Ostmann, K. Pierz, G. Hein, P. Dawson, and M. Koch, “Audio signal transmission over THz communication channel using semiconductor modulator,” Electron. Lett., vol. 40, no. 2, pp. 124–126, 2004.CrossRefGoogle Scholar
  28. 28.
    H. Han, H. Park, M. Cho, and J. Kim, “Terahertz pulse propagation in a plastic photonic crystal fiber,” Appl. Phys. Lett., vol. 80, p. 2634, 2002.CrossRefGoogle Scholar
  29. 29.
    T. Ito, Y. Matsuura, M. Miyagi, H. Minamide, and H. Ito, “Flexible terahertz fiber optics with low bend-induced losses,” JOSA B, vol. 24, no. 5, pp. 1230–1235, 2007.CrossRefGoogle Scholar
  30. 30.
    K. Nielsen, H. Rasmussen, A. Adam, P. Planken, O. Bang, and P. Jepsen, “Bendable, low-loss topas fibers for the terahertz frequency range,” Opt. Express, vol. 17, no. 10, pp. 8592–8601, 2009.CrossRefGoogle Scholar
  31. 31.
    S. Atakaramians, S. Afshar V, H. Ebendorff-Heidepriem, M. Nagel, B. Fischer, D. Abbott, and T. Monro, “THz porous fibers: design, fabrication and experimental characterization,” Opt. Express, vol. 17, no. 16, pp. 14053–15062, 2009.CrossRefGoogle Scholar
  32. 32.
    M. Naftaly and R. E. Miles, “Terahertz time-domain spectroscopy of silicate glasses and the relationship to material properties,” J. Appl. Phys., vol. 102, no. 4, p. 043517, 2007.CrossRefGoogle Scholar
  33. 33.
    M. Reuter, N. Vieweg, B. M. Fischer, M. Mikulicz, M. Koch, K. Garbat, and R. Dabrowski, “Highly birefringent, low-loss liquid crystals for THz applications,” submitted for publication, 2012.Google Scholar
  34. 34.
    E. Nowinowski-Kruszelnicki, J. Kedzierski, Z. Raszewski, L. Jaroszewicz, R. Dabrowski, M. Kojdecki, W. Piecek, P. Perkowski, K. Garbat, M. Olifierczuk, S. M., K. Ogrodnik, P. Morawiak, and E. Miszczyk, “High birefringence liquid crystal mixtures for electro-optical devices,” Opt. Appl., vol. 42, no. 1, pp. 167–180, 2012.Google Scholar
  35. 35.
    N. Krumbholz, T. Hochrein, N. Vieweg, T. Hasek, K. Kretschmer, M. Bastian, M. Mikulics, and M. Koch, “Monitoring polymeric compounding processes inline with THz time-domain spectroscopy,” Polym. Test., vol. 28, no. 1, pp. 30–35, 2009.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Benedikt Scherger
    • 1
  • Marco Reuter
    • 1
  • Maik Scheller
    • 1
  • Kristian Altmann
    • 1
  • Nico Vieweg
    • 1
  • Roman Dabrowski
    • 2
  • Jason A. Deibel
    • 3
  • Martin Koch
    • 1
  1. 1.Fachbereich PhysikPhilipps Universität MarburgMarburgGermany
  2. 2.Institute of ChemistryMilitary University of TechnologyWarsawPoland
  3. 3.Department of PhysicsWright State UniversityDaytonUSA

Personalised recommendations