Development of a Compact sub-THz Gyrotron FU CW CI for Application to High Power THz Technologies

  • Toshitaka IdeharaEmail author
  • Jagadish C. Mudiganti
  • La Agusu
  • Tomohiro Kanemaki
  • Isamu Ogawa
  • Toshimichi Fujiwara
  • Yoh Matsuki
  • Keisuke Ueda


For application of high frequency gyrotron to high power THz technology, Gyrotron FU CW series is being developed in FIR FU. Gyrotron FU CW CI is developed as one of sub-THz gyrotrons included in the series. The advantage of the gyrotron is compactness using a compact superconducting magnet and compact power supply system, which makes the accesses of the gyrotron to applied large-scale devices easier and extends the applications of gyrotron to wider fields. The designed frequency and cavity mode are 394.5 GHz and TE26 mode for application to the 600 MHz DNP-NMR spectroscopy. As the operation results, the frequency and the output power were 394.03 GHz and around 30 W, respectively, which are available for the application to the 600 MHz DNP-NMR measurement. In addition, this gyrotron can operate at many other frequencies and cavity modes for application to high power THz technologies in wide fields. In this paper, the design and the operation results including long pulse or CW mode are presented.


sub-THz Gyrotron Compact radiation source High power THz technology DNP-NMR spectroscopy Hybrid quantum beam technology 



This work was partially supported by the research project from MEXT (Japanese Ministry of Education, Culture, Sports, Science and Technology) named Special Fund for Education and Research and another project from JST (Japan Science and Technology Agency) named SENTAN project. It was carried out in the branch of FIR FU, the area of which was prepared by Todoroki Sangyo Company in Fukui.


  1. 1.
    D. V. Kisel’, G.S. Korablev, V.G. Navel’yev, M.I. Petelin, and Sh. Ye. Tsimring, Radiotekh. Elektron. 19, 782–797 (1974). [Engl. Transl.: Radio Eng. Electron. Phys. 19, 781–788.]Google Scholar
  2. 2.
    M. Thumm, State-of-the-Art of High Power Gyro-Devices and Free Electron Masers (Update 2010), KIT Scientific Reports 7575 (KIT Scientific Publishing, 2011) 1–131.Google Scholar
  3. 3.
    T. Idehara, T. Saito, I. Ogawa, S. Mitsudo, Y. Tatematsu, S. Sabchevski, The potential of the gyrotrons for development of the sub-terahertz and the terahertz frequency range—A review of novel and prospective applications, Thin Solid Films, 517 (2008) 1503–1506.CrossRefGoogle Scholar
  4. 4.
    V. Bratman, M. Glyavin, T. Idehara, Y. Kalynov, A. Luchinin, V. Manuilov, S. Mitsudo, I. Ogawa, T. Saito, Y. Tatematsu, V. Zapevalov, Review of Subterahertz and Terahertz Gyrodevices at IAP RAS and FIR FU, IEEE Trans. Plasma Sci., 37 (2009) 36–46.CrossRefGoogle Scholar
  5. 5.
    V.E. Zapevalov, Gyrotron: resources for development, Conf. Digest of the 32-th Int. Conference on Infrared and Millimeter Waves and 15-th Int. Conference on Terahertz Electronics, 2007, Sept.2–Sept.7 Cardiff, UK, Conference Digest, 100–101.Google Scholar
  6. 6.
    N. Kumar, U. Singh, T. P. Singh, A. K. Sinha, A Review on the Applications of High Power, High Frequency Microwave Source: Gyrotron, J Fusion Energy, 30 (2011) 257–276.CrossRefGoogle Scholar
  7. 7.
    T. Idehara, H. Tsuchiya, O. Watanabe, La Agusu, S. Mitsudo, Int. J. Infrared Millim. Waves, The first experiment of a THz gyrotron with a pulse magnet, 27 (2006) 319–331.Google Scholar
  8. 8.
    M. Yu. Glyavin, A. G. Luchinin, G. Yu Golubiatnikov, Generation of 1.5-kW, 1-THz Coherent Radiation from a Gyrotron with a Pulsed Magnetic Field, Phys. Rev. Lett., 100 (2008) 015101.CrossRefGoogle Scholar
  9. 9.
    T. Idehara, T. Saito, H. Mori, H. Tsuchiya, A. La Agusu, S. Mitsudo, Long Pulse Operation of the THz Gyrotron with a Pulse Magnet, Int. J Infrared Millimeter Waves, 29 (2008) 131–141.CrossRefGoogle Scholar
  10. 10.
    T. Idehara, T. Tatsukawa, S. Matsumoto, K. Kunieda, K. Hemmi and T. Kanemaki, Development of high frequency, cyclotron harmonic gyrotron oscillator, Phys. Letts. A132, 344–346 (1983).Google Scholar
  11. 11.
    S. Mitsudo, T. Higuchi, K. Kanazawa, T. Idehara, I. Ogawa, High-field ESR measurements using Gyrotron FU series as radiation sources, J. Phys. Soc. Japan, 72 Suppl. B (2003) 172–176.Google Scholar
  12. 12.
    I. Ogawa, K. Yoshiue, H. Ibe, T. Idehara and K. Kawahata, Long-pulse operation of a submillimeter wave gyrotron and its application to plasma scattering measurement, Rev. Sci. Instrum. 65, 1788–1789 (1994).CrossRefGoogle Scholar
  13. 13.
    S. Sabchevski, T. Saito, T. Idehara, T. Nakano, Y. Tatematsu, Simulation of Mode Interaction in the Gyrotron FU CW I, Int. Journal of Infrared and Millimeter Waves, 28, 1079–1093 (2007).CrossRefGoogle Scholar
  14. 14.
    V. Zapevalov, V.K. Lygin, O.V, Malygin, M.A. Moiseev, V.I. Khizhnyak, V.P. Karpov, E.M. Tai, T. Idehara, S. Mitsudo, I. Ogawa and T. Saito, High power oscillator of continuous electromagnetic radiation with a frequency of 300 GHz, Radiophysics and Quantum Electronics 50, 420–427 (2007).CrossRefGoogle Scholar
  15. 15.
    T. Idehara, K. Kosuga, La Agusu, R. Ikeda, I. Ogawa, T. Saito, Y. Matsuki, K. Ueda, T. Fujiwara, Continuously Frequency Tunable High Power Sub-THz Radiation Source–Gyrotron FU CW VI for 600 MHz DNP–NMR Spectroscopy, J Infrared Milli Terahz Waves, 31 (2010) 775–790.CrossRefGoogle Scholar
  16. 16.
    T. Idehara, K. Kosuga, A. La Agusu, I. Ogawa, H. Takahashi, M. E. Smith, R. Dupree, Gyrotron FU CW VII for 300 MHz and 600 MHz DNP-NMR Spectroscopy, J Infrared Milli Terahz Waves, 31 (2010) 763–774.CrossRefGoogle Scholar
  17. 17.
    Y. Matsuki, H. Takahashi, K. Ueda, T. Idehara, I. Ogawa, M. Toda, H. Akutsu, T. Fujiwara, Dynamic nuclear polarization experiments at 14.1 T for solid-state NMR, Physical Chemistry Chemical Physics, 12 (2010) 5799–5803.CrossRefGoogle Scholar
  18. 18.
    F. Horii, T. Idehara, Y. Fujii, I. Ogawa, A. Horii, G. Entzminger, F.D. Doty, 200 MHz DNP NMR spectroscopy with a 131 GHz gyrotron for the analysis of polymer surface, Proc. 36 Int. Conf. on Infrared, Millimeter and Therahertz Waves IRMMW-THz 2011 (2–7 Oct, 2011, Houston, USA) 1–2.Google Scholar
  19. 19.
    Kevin J. Pike, Thomas F. Kemp, Hiroki Takahashi, Robert Day, Andrew P. Howes, Eugeny V. Kryukov, James F. MacDonald, Alana E.C. Collis, David R. Bolton, Richard J. Wylde, Marcella Orwick, Kosuke Kosuga, Andrew J. Clark, Toshitaka Idehara, Anthony Watts, Graham M. Smith, Mark E. Newton, Ray Dupree, Mark E. Smith, A spectrometer designed for 6.7 and 14.1 T DNP-enhanced solid-state MAS NMR using quasi-optical microwave transmission, Journal of Magnetic Resonance 215 (2012) 1–9.Google Scholar
  20. 20.
    R. Dupree, M. E. Smith, M. E. Newton, K. J. Pike, A.P. Howes, R. Kowalczyk, E. Krjukov, T. F. Kemp, H. Takahashi, A. Lovejoy, G. M. Smith, D. Bolton, T. Idehara, K. Kosuga, La Agusu, I. Ogawa, Towards DNP enhanced solid-state NMR at 14.1 T, Proc. 3rd Intern. Workshop on Far Infrared Technologies IW-FIRT 2010 (15–17 March, 2010, University of Fukui, Japan) 17a–3.Google Scholar
  21. 21.
    J. Goulon, A. Rogalev, F. Wilhelm, G. Goujon, X-Ray Detected Magnetic Resonance: A New Spectroscopic Tool, In E. Beaurepaire, H. Bulou, F. Scheurer, J.-P. Kappler (Eds.), Magnetism and Synchrotron Radiation: New Trends, Springer Proceedings in Physics, Vol. 133 (1st Edition, 2010, XXI, 421 p. 207 illus.)Google Scholar
  22. 22.
    A. Miyazaki, T. Suehara, A. Ishida, T. Namba, S. Asai, T. Kobayashi, H. Saito, M. Yoshida, T. Idehara, I. Ogawa, Y. Urushizaki, S. Sabchevski, Experiment for the First Direct Measurement of the Hyper-fine Splitting of Positronium, Journal of Physics: Conference Series, Vol. 225 (2010) 012037.CrossRefGoogle Scholar
  23. 23.
    A. Miyazaki, T. Yamazaki, T. Suehara, T. Namba, S. Asai, T. Kobayashi, H. Saito, T. Idehara, I. Ogawa, Y. Urushizaki, S. Sabchevski, New Experiment for the First Direct Measurement of Positronium Hyperfine Splitting with sub-THz Light, Materials Science Forum, 666 (2011) 133–137.CrossRefGoogle Scholar
  24. 24.
    Y. Sakasegawa, T. Idehara, Y. Yamaguchi, S. Mitsudo, K. Hirakawa, Current suppression in semiconductor superlattices driven by intense sub-Thz radiation from a gyrotron, Proc. 17th Int. Conf. on Electron Dynamics in Semiconductors, Optoelectronics and Nanostructures EDISON 17 (7–12 August, 2011, Santa Barbara, California) P1.18.Google Scholar
  25. 25.
    T. Tatsukawa, A. Doi, M. Teranaka, H. Takashima, F. Goda, T. Idehara, I. Ogawa, T. Kanemaki, S. Nishizawa, Submillimeter Wave Irradiation of Living Bodies using a Gyrotron and a Catheter, Jpn. J. Appl. Phys., 41 (2002) 5486–5489.CrossRefGoogle Scholar
  26. 26.
    T. Tatsukawa, A. Doi, M. Teranaka, H. Takashima, F. Goda, S. Watanabe, T. Idehara, T. Kanemaki, T. Namba, Microwave invasion through anti-reflecting layers of dielectrics at millimeter wave irradiation to living bodies, Int. I. Infrared and Millimeter Waves, 26 (2005) 591–606.CrossRefGoogle Scholar
  27. 27.
    N. Miyoshi, Y. Fukunaga, I. Ogawa, T. Idehara, Application for hyperthermia treatment of an experimental tumor using a gyrotron (107, 203 GHz), Proc. 34th Int. Conference Infrared, Millimeter and Terahertz Waves IRMMW-THz 2009 (21–25 Sept. 2009, Busan, Korea), 1–2.Google Scholar
  28. 28.
    N. Miyoshi, S. Ito, I. Ogawa, T. Idehara, Combination treatment of hyperthermia and photodynamic for experimental tumor model using gyrotron (107, 203 GHz), Proc. 35th Int. Conference Infrared, Millimeter and Terahertz Waves IRMMW-THz 2010 (5–10 Sept. 2010, Rome, Italy) 1–2.Google Scholar
  29. 29.
    T. Idehara, T. Saito, I. Ogawa, S. Mitsudo, Y. Tatematsu, A. La Agusu, H. Mori, S. Kobayashi, Development of Terahertz FU CW Series for DNP, Appl. Magn. Resonance, 34 (2008) 265–275.CrossRefGoogle Scholar
  30. 30.
    T.H. Chang, T. Idehara, I. Ogawa, L. Agusu, S. Kobayashi, Frequency tunable gyrotron using backwardwave components, J. Appl. Physics, 105 (2009) 063304-1–4.Google Scholar
  31. 31.
    M. Toda, Y. Fujii, S. Mitsudo, I. Ogawa, T. Idehara, T. Saito, H. Ito, M. Chiba, X-band 1 H-DNP Experiments and High-Power Subterahertz Wave Irradiation Effect on BDPA-doped Toluene Solution, Appl. Magn. Reson., 34 (2008) 277–287.CrossRefGoogle Scholar
  32. 32.
    T. Idehara, I. Ogawa, La Agusu, T. Kanemaki, S. Mitsudo, T. Saito, T. Fujiwara, H. Takahashi, Development of 394.6 GHz CW Gyrotron (Gyrotron FU CW II) for DNP/Proton-NMR at 600 MHz, Int. J. Infrared Millimeter Waves, 28, 433–442 (2007).Google Scholar
  33. 33.
    S.-T. Han, R. G. Griffin, K.-N. Hu, C.-G. Joo, C. D. Joye, J. R. Sirigiri, R. J. Temkin, A. C. Torrezan, P. P. Woskov, Spectral Characteristics of a 140-GHz Long-Pulsed Gyrotron, IEEE Trans. PlasmaSci., 35 (2007) 559–564.CrossRefGoogle Scholar
  34. 34.
    V. S. Bajaj, M. K. Hornstein, K. E. Kreischer, J. R. Sirigiri, P. P. Woskov, M. L. Mak-Jurkauskas, J. Herzfeld, R. J. Temkin, R. G. Griffin, 250 GHz CW gyrotron oscillator for dynamic nuclear polarization in biological solid state NMR, Journal of Magnetic Resonance, 189, (2007) 251–279.CrossRefGoogle Scholar
  35. 35.
    A. C. Torrezan, S.-T. Han, I. Mastovsky, M. A. Shapiro, J. R. Sirigiri, R. J. Temkin, A. B. Barnes, R. G. Griffin, Continuous-Wave Operation of a Frequency-Tunable 460 GHz Second-Harmonic Gyrotron for Enhanced Nuclear Magnetic Resonance, IEEE Trans. Plasma Sci., 38 (2010) 1150–1159.CrossRefGoogle Scholar
  36. 36.
    L.R. Becerra, G.J. Gerfen, R. J. Temkin, D.J. Singel, R.G. Griffin, Dynamic Nuclear Polarization with a Cyclotron Resonance Maser at 5 T, Phys, Rev. Letts. 71 3561–3564 (1993).CrossRefGoogle Scholar
  37. 37.
    E.A. Nanni, A. B. Barnes, R.G. Griffin, R. J. Temkin, THz Dynamic Nuclear Polarization NMR, IEEE Trans. Thz Sci. Technolog., 1 (2011) 145–163.CrossRefGoogle Scholar
  38. 38.
    V.E. Zapevalov, V.V. Dubrov, A. Sh. Fix, E.A. Lopelovich, A.N. Kufftin, O.V. Malygin, V.N. Manuilov, M.A. Moiseev, A.S. Sedov, N.P. Venediktov, N.A. Zavolsky, Development of 260 GHz Harmonic CW Gyrotron with High Stability of Output Parameters for DNP Spectroscopy, Proc. 34th Intern. Conf. on Infrared, Millimeter and Terahertz Waves (IRMMW-THz 2009), Busan, Korea, September 21–25, 2009.Google Scholar
  39. 39.
    M. Blanck, P. Borchard, P. Cahalan, S. Cauffman, K. Felch, M. Rosay, L. Tometich, Demonstration of a 263 GHz Gyrotron for Dynamic Nuclear Polarization, Proc. 34th Intern. Conf. on Infrared, Millimeter and Terahertz Waves (IRMMW-THz 2009), Busan, Korea, September 21–25, 2009.Google Scholar
  40. 40.
    S. Alberti, J.P. Ansermet, K.A. Avramides, D. Fasel, J.P. Hogge, S. Kern, C. Lievin, Y. Liu, A. Macor, I. Pogonakis, M. Silva, M.Q. Tran, T.M. Tran, D. Wagner, Design of a frequency- tunable gyrotron for DNP-enhanced NMR Spectroscopy, Proc. 34th Intern. Conf. on Infrared, Millimeter and Terahertz Waves (IRMMW-THz 2009), Busan, Korea, September 21–25, 2009.Google Scholar
  41. 41.
    M.V. Kartikeyan, E. Borie, M. Thumm, A 250 GHz, 50 W, CW Second Harmonic Gyrotron, Int. J. Infrared Millimeter Waves, 28, 611–619 (2007).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Toshitaka Idehara
    • 1
    Email author
  • Jagadish C. Mudiganti
    • 1
  • La Agusu
    • 1
  • Tomohiro Kanemaki
    • 1
  • Isamu Ogawa
    • 1
  • Toshimichi Fujiwara
    • 2
  • Yoh Matsuki
    • 2
  • Keisuke Ueda
    • 2
  1. 1.Research Center for Development of Far-Infrared RegionUniversity of Fukui (FIR FU)Fukui-shiJapan
  2. 2.Institute for Protein ResearchOsaka UniversitySuita-shiJapan

Personalised recommendations