Spectral Approach in the Analysis of Pulsed Terahertz Radiation

  • Anna A. Ezerskaya
  • Dmitry V. Ivanov
  • Sergey A. Kozlov
  • Yuri S. Kivshar
Article

Abstract

We derive the spectral analogues of the Maxwell equations for describing the propagation of electromagnetic waves in linear and weakly nonlinear dielectric media, which can be useful for the THz spectroscopy of short pulses. We discuss the solutions of those equations for TM and TE polarized nonlinear waves. We obtain analytical solutions of these equations for the case of linear homogeneous isotropic and weakly nonlinear media, and also analyze the patterns of the Fresnel and Fraunhofer diffraction of single-cycle Gaussian THz pulses.

Keywords

Maxwell’s equations Terahertz spectroscopy Ultrashort pulse Single cycle pulse Fresnel diffraction Fraunhofer diffraction 

References

  1. 1.
    Kim Y., Yee D.-S. High-speed terahertz time-domain spectroscopy based on electronically controlled optical sampling // Optics Letters, 2010. V. 35. № 22. P. 3715-3717.CrossRefGoogle Scholar
  2. 2.
    Yasui T., Nose M., Ihara A., Kawamoto K., Yokoyama S., Inaba H., Minoshima K., Araki T. Fiber-based, hybrid terahertz spectrometer using dual fiber combs // Optics Letters, 2010. V. 35. № 10. P. 1689-1691.CrossRefGoogle Scholar
  3. 3.
    Jansen C., Wietzke S., Peters O., Scheller M., Vieweg N., Salhi M., Krumbholz N., Jördens C., Hochrein T., Koch M. Terahertz imaging: applications and perspectives // Applied Optics, 2010. V. 49. № 19. P. E48-E57.CrossRefGoogle Scholar
  4. 4.
    Valitov R.A., Dyubko S.S., Kuzmitchev V.N., Makarenko V.I., Sokolov A.V., Shejko V.P. Submillimeter waves technology (Rus). Moscow: Soviet radio, 1964, 476p.Google Scholar
  5. 5.
    Bespalov V.G., Gorodetskiǐ A.A., Denisyuk I.Y., Kozlov S.A., Krylov V.N., Lukomskiǐ G.V., Petrov N.V., Putilin S.É. Methods of generating superbroadband terahertz pulses with femtosecond lasers // Journal of Optical Technology, 2008. V. 75. № 10. P. 636-642.CrossRefGoogle Scholar
  6. 6.
    Lee Y.-S. Principles of Terahertz Science and Technology. − Corvalis: Springer Science+Business Media, 2009. 347p.Google Scholar
  7. 7.
    Nazarov M.M., Shkurinov A.P., Kuleshov E.A., Tuchin V.V. Terahertz time-domain spectroscopy of biological tissues // Quantum Electronics, 2008. V. 38. № 7. P. 647-654.CrossRefGoogle Scholar
  8. 8.
    Melinger J.S., Harsha S.S., Laman N., Grischkowsky D. Temperature dependent characterization of terahertz vibrations of explosives and related threat materials // Optics Express, 2010. V. 18. № 26. P. 27238-27250.CrossRefGoogle Scholar
  9. 9.
    Tomaino J.L., Jameson A.D., Kevek J.W., Paul M.J., van der Zande A.M., Barton R.A., McEuen P.L., Minot E.D., Lee Y.-S. Terahertz imaging and spectroscopy of large-area single-layer graphene // Optics Express, 2011. V. 19. № 1. P. 141-146.CrossRefGoogle Scholar
  10. 10.
    Kužel P., Němec H., Kadlec F., Kadlec C. Gouy shift correction for highly accurate refractive index retrieval in time-domain terahertz spectroscopy // Optics Express, 2010. V. 18. № 15. P. 15338-15384.CrossRefGoogle Scholar
  11. 11.
    Zhang X.-C., Xu. J. Introduction to THz wave photonics.−N.Y.: Springer Science+Business Media, 2009. 249 p.Google Scholar
  12. 12.
    Yi M., Lee K., Lim J., Hong Y., Jho Y.-D., Ahn J. Terahertz waves emitted from an optical fiber // Optics Express, 2010. V. 18. № 13. P. 13693-13699.CrossRefGoogle Scholar
  13. 13.
    Hebling J., Hoffmann M. C., Ka-Lo Yeh, Tóth G. and Keith A. N. Nonlinear lattice response observed through terahertz SPM // Springer Series in Chemical Physics. 2009. V.92. Part 8. P. 651-653.CrossRefGoogle Scholar
  14. 14.
    Watanabe S., Minami N., Shimano R. Intense terahertz pulse induced exciton generation in carbon nanotubes // Optics Express, 2011. V. 19. № 2. P. 1528-1538.CrossRefGoogle Scholar
  15. 15.
    Ziolkowski R. W., Judkins J. B. Propagation characteristics of ultrawide-bandwidth pulsed Gaussian beams // JOSA A, 1992. V. 9. № 11. P. 2021-2030.CrossRefGoogle Scholar
  16. 16.
    Kaplan A.E. Diffraction-induced transformation of near-cycle and subcycle pulses // JOSA B, 1998. V. 15. № 3. P. 951-956.CrossRefGoogle Scholar
  17. 17.
    Jepsen P.U., Jacobsen R.H., Keiding S.R. Generation and detection of terahertz pulses from biased semiconductor antennas // JOSA B, 1996. V. 13. № 11. P. 2424-2436.CrossRefGoogle Scholar
  18. 18.
    You D., Bucksbaum P.H. Propagation of half-cycle far infrared pulses // JOSA B, 1997. V. 14. № 7. P. 1651-1655.CrossRefGoogle Scholar
  19. 19.
    Born M., Wolf E. Principles of Optics. – 7th ed. Cambridge University Press, New York, 1999.Google Scholar
  20. 20.
    Berkovskiy A.N., Kozlov S.A., Shpolyanskiy Y.A. Self-focusing of few-cycle light pulses in dielectric media // Phys. Rev. A., 2005. V. 72. P.043821.CrossRefGoogle Scholar
  21. 21.
    Bespalov V.G., Kozlov S.A., Shpolyanskiy Y.A., Walmsley I.A. Simplified field wave equations for the nonlinear propagation of extremely short light pulses // Phys. Rev. A., 2002. V. 66. P.013811.CrossRefGoogle Scholar
  22. 22.
    Korn A.G., Korn T.M. Mathematical handbook for scientist and engineers. – N.-Y.: McGraw-Hill book Company, 1968. 832p.Google Scholar
  23. 23.
    Kamke E. Differential gleichungen (german). – Leipzec: Akademische Verlagsgesellschaft Geest & Portig, - Mathematik und ihre Anwendungen in Physik und Technik. 1959. 576p.Google Scholar
  24. 24.
    Xie X., Xu J., Dai J., Zhang X.-C. Enhancement of terahertz wave generation from laser induced plasma // Applied Physics Letters, 2007. V. 90, P.141104CrossRefGoogle Scholar
  25. 25.
    Kohler C., Cabrera-Granado E., Babushkin I., Berge L., Hermann J., Skupin S. Directionality of THz emission from photoinduced gas plasma // Optics Letters. 2011. V. 36. №. 16, P.3166-3168.CrossRefGoogle Scholar
  26. 26.
    Shen Y., Watanabe T., Arena D.A., Kao C.C., Murphy J.B., Tsang T.Y., Wang X.J., Carr G.L. Nonlinear Cross-Phase Modulation with Intense Single-Cycle Terahertz Pulses // Physical Review Letters. 2007. V. 99. № 4. P.043901.CrossRefGoogle Scholar
  27. 27.
    Kozlov S.A., Petroshenko P.A. Self-Division of a Pulse Consisting of Several Light-Field Oscilations in a Nonlinear Medium with Dispersion // JETP Letters. 2002. V. 76. № 4. P.206-210.CrossRefGoogle Scholar
  28. 28.
    Kozlov S.A., Samartsev V.V. The basics of femtosecond optics (rus). – Moscow: Fizmatlit, 2009, 292p.Google Scholar
  29. 29.
    Cochran W.T., Cooley J.W., Favin D.L., Helms H.D., Kaenel R.A., Lang W.W., Maling G.C. Jr., Nelson D.E., Rader C.M., Welch, P.D. What is the fast Fourier transform? Proceedings of IEEE, 1967. V. 55, № 10.Google Scholar
  30. 30.
    Goodman J.W. Introduction to Fourier optics. − 2nd ed.: McGraw-Hill, New York, 1996.Google Scholar
  31. 31.
    Litvinenko O.N. The basics of radiophysics (rus). − Kiev: Tehnika, 1974. 208p.Google Scholar
  32. 32.
    Yariv A., Pochi Y. Optical waves in crystals. – N.-Y.: Wiley, 1984. 589p.Google Scholar
  33. 33.
    Yeh K.L., Hebling J., Hoffmann M.C., Nelson K.A. Generation of high average power 1 kHz shaped THz pulses via optical rectification // Optical Communications. 2008. V. 281. P. 3567-3570.CrossRefGoogle Scholar
  34. 34.
    Aleshkevich V., Kartashov Y., Vyshokih V. Diffraction and focusing of extremely short optical pulses: generalization of the Sommerfeld integral // Applied Optics, 1999. V. 38. № 9. P.1677-1681.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Anna A. Ezerskaya
    • 1
  • Dmitry V. Ivanov
    • 1
  • Sergey A. Kozlov
    • 1
  • Yuri S. Kivshar
    • 1
    • 2
  1. 1.St. Petersburg State University of Information Technology, Mechanics and OpticsSt. PetersburgRussia
  2. 2.Nonlinear Physics Center, Research School of Physics and Engineering, Australian National UniversityCanberraAustralia

Personalised recommendations