Mid-infrared Frequency Comb Spanning an Octave Based on an Er Fiber Laser and Difference-Frequency Generation

  • Fritz KeilmannEmail author
  • Sergiu Amarie


We describe a coherent mid-infrared continuum source with 700 cm-1 usable bandwidth, readily tuned within 600–2500 cm-1 (4–17 μm) and thus covering much of the infrared "fingerprint" molecular vibration region. It is based on nonlinear frequency conversion in GaSe using a compact commercial 100-fs-pulsed Er fiber laser system providing two amplified near-infrared beams, one of them broadened by a nonlinear optical fiber. The resulting collimated mid-infrared continuum beam of 1 mW quasi-cw power represents a coherent infrared frequency comb with zero carrier-envelope phase, containing about 500,000 modes that are exact multiples of the pulse repetition rate of 40 MHz. The beam's diffraction-limited performance enables long-distance spectroscopic probing as well as maximal focusability for classical and ultraresolving near-field microscopies. Applications are foreseen also in studies of transient chemical phenomena even at ultrafast pump-probe scale, and in high-resolution gas spectroscopy for e.g. breath analysis.


Infrared laser Infrared continuum source Mid-infrared supercontinuum Frequency-comb beam Mid-infrared frequency comb 



We acknowledge helpful dicussions with Marco Marangoni and Albert Schliesser.


  1. 1.
    Griffiths, P. R. & Haseth, J. A. d. Fourier Transform Infrared Spectroscopy (Wiley, 2007).Google Scholar
  2. 2.
    Miller, L. M. & Dumas, P. Chemical imaging of biological tissue with synchrotron infrared light. Biochimica and Biophysica Acta 1758, 846–857 (2006).CrossRefGoogle Scholar
  3. 3.
    Cao, X., Jahazi, M., Immarigeon, J. P. & Wallace, W. A review of laser welding techniques for magnesium alloys. Journal of Materials processing Technology 171, 188–204 (2006).CrossRefGoogle Scholar
  4. 4.
    Wysocki, G. et al. Widely tunable mode-hop free external cavity quantum cascade lasers for high resolution spectroscopy and chemical sensing. Applied Physics B 92, 305–311 (2008).CrossRefGoogle Scholar
  5. 5.
    Amy-Klein, A. et al. Slow molecule detection of Ramsey fringes in two-photon spectroscopy: which is better for high resolution spectroscopy and metrology. Optics Express 4, 67–76 (1999).CrossRefGoogle Scholar
  6. 6.
    Liu, X. Free-space optics optimization models for building sway and atmospheric interference using variable wavelength. IEEE Transactions on Communications 57, 492–498 (2009).CrossRefGoogle Scholar
  7. 7.
    Röseler, A. Infrared spectroscopic ellipsometry (Akademie-Verlag, 1990).Google Scholar
  8. 8.
    Ashkenov, N. et al. Infrared dielectric functions and phonon modes of high-quality ZnO films. Journal of Applied Physics 93, 126–133 (2003).CrossRefGoogle Scholar
  9. 9.
    Keilmann, F. & Hillenbrand, R. Near-field microscopy by elastic light scattering from a tip. Philosophical Transactions of the Royal Society A 362, 787–805 (2004).CrossRefGoogle Scholar
  10. 10.
    Keilmann, F. & Hillenbrand, R. in Nano-Optics and Near-Field Optical Microscopy, eds. A. Zayats and D. Richards, ISBN 978-1-59693-283-8 (ArtechHouse, 2009).Google Scholar
  11. 11.
    Adler, F., Cossel, K. C. & Thorpe, M. Phase-stabilized, 1.5 W frequency comb at 2.8-4.8 μm. Optics Letters 34, 1330–1332 (2009).CrossRefGoogle Scholar
  12. 12.
    Vodopyanov, K. L., Sorokin, E., Sorokina, I. T. & Schunemann, P. G. Mid-IR frequency comb source spanning 4.4-5.4 μm based on subharmonic GaAs optical parametric oscillator. Optics Letters 36, 2275–2277 (2011).CrossRefGoogle Scholar
  13. 13.
    Schliesser, A., Picque, N. & Hänsch, T. W. Mid-infrared frequency combs. In prep. (2012).Google Scholar
  14. 14.
    Wang, C. Y. et al. Mid-infrared optical frequency combs based on crystalline microresonators. arxiv:1109.2716v1 (2011).Google Scholar
  15. 15.
    Leindecker, N. et al. Octave-spanning ultrafast OPO with 2.6-6.1 μm instantaneous bandwidth pumped by a femtosecond Tm-fiber laser. Optics Express 20, 7046–7053 (2012).CrossRefGoogle Scholar
  16. 16.
    Zhang, Z. et al. Asynchronous midinfrared ultrafast optical parametric oscillator for dual-comb spectroscopy. Optics Letters 37, 187–189 (2012).CrossRefGoogle Scholar
  17. 17.
    Gambetta, A., Ramponi, R. & Marangoni, M. Mid-infrared optical combs from a compact amplified Er-doped fiber oscillator. Optics Letters 33, 2671–2673 (2008).CrossRefGoogle Scholar
  18. 18.
    Amarie, S. & Keilmann, F. Broadband-infrared assessment of phonon resonance in scattering-type near-field microscopy. Physical Review B 83, 45404-1–45404-9 (2011).Google Scholar
  19. 19.
    Ruehl, A. et al. Widely tunable mid-IR frequency comb source based on difference frequency generation. arXiv:1203.2441v1 (2012).Google Scholar
  20. 20.
    Udem, T., Holzwarth, R. & Hänsch, T. W. Optical frequency metrology. Nature 416, 233–237 (2002).CrossRefGoogle Scholar
  21. 21.
    Brehm, M., Schliesser, A. & Keilmann, F. Spectroscopic near-field microscopy using frequency combs in the mid-infrared. Optics Express 14, 11222–11233 (2006).CrossRefGoogle Scholar
  22. 22.
    Baum, P., Lochbrunner, S. & Riedle, E. Tunable sub-10-fs ultraviolet pulses generated by achromatic frequency doubling. Optics Letters 29, 1686–1688 (2004).CrossRefGoogle Scholar
  23. 23.
    Huth, F. et al. Nano-FTIR absorption spectroscopy of molecular fingerprints at 20 nm spatial resolution. Nanoletters (2012).Google Scholar
  24. 24.
    Keilmann, F., Gohle, C. & Holzwarth, R. Time-domain mid-infrared frequency-comb spectrometer. Optics Letters 29, 1542–1544 (2004).CrossRefGoogle Scholar
  25. 25.
    Schliesser, A., Brehm, M., van der Weide, D. W. & Keilmann, F. Frequency-comb infrared spectrometer for rapid, remote chemical sensing. Optics Express 13, 9029–9038 (2005).CrossRefGoogle Scholar
  26. 26.
    Brehm, M., Schliesser, A., Cajko, F., Tsukerman, I. & Keilmann, F. Antenna-mediated back-scattering efficiency in infrared near-field microscopy. Optics Express 16, 11203–11215 (2008).CrossRefGoogle Scholar
  27. 27.
    Zolot, A. M. et al. Direct-comb molecular spectroscopy with accurate, resolved comb teeth over 43 THz. Optics Letters 37, 638–640 (2012).CrossRefGoogle Scholar
  28. 28.
    Nguyen, P. H., Staudt, H., Wachtveitl, J. & Stock, G. Real time observation of ultrafast peptide conformational dynamics: molecular dynamics simulation vs infrared experiment. J. Physical Chemistry B 115, 13084–13092 (2011).CrossRefGoogle Scholar
  29. 29.
    Günter, G. et al. Sub-cycle switch-on of ultrastrong light-matter interaction. Nature 458, 178–181 (2009)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  1. 1.LASNIXBergGermany
  2. 2.Max Planck Institute of Quantum OpticsGarchingGermany

Personalised recommendations