Application of Continuously Frequency-Tunable 0.4 THz Gyrotron to Dynamic Nuclear Polarization for 600 MHz Solid-State NMR

  • Yoh Matsuki
  • Keisuke Ueda
  • Toshitaka Idehara
  • Ryosuke Ikeda
  • Kosuke Kosuga
  • Isamu Ogawa
  • Shinji Nakamura
  • Mitsuru Toda
  • Takahiro Anai
  • Toshimichi Fujiwara


In this paper we present results that demonstrate the utility of a continuously frequency-tunable 0.4 THz-gyrotron in a dynamic nuclear polarization (DNP)-enhanced solid-state NMR (SSNMR) spectroscopy at one of the highest magnetic fields, B 0 = 14.1 T (600 MHz for 1H Larmor frequency). Our gyrotron called FU CW VI generates sub-mm wave at a frequency near 0.4 THz with an output power of 4–25 W and a tunability over a range of more than 1 GHz by sweeping the magnetic field at the gyrotron cavity. We observed overall down shifting of the central frequency by up to ~1 GHz at high radiation duty factors and beam current, presumably due to the cavity thermal expansion by a heating, but the tunable range was not significantly changed. The frequency tunability facilitated the optimization of the DNP resonance condition without time-consuming field-sweep of the high-resolution NMR magnet, and enabled us to observe substantial enhancement of the SSNMR signal (ε DNP = 12 at 90 K).


Gyrotron Dynamic nuclear polarization Solid-state NMR High-field spectroscopy 



This research is partly supported by SENTAN, JST and Targeted Proteins Research Program, MEXT.


  1. 1.
    G. T. Debelouchina, M. J. Bayro, P. C. van der Wel, M. A. Caporini, A. B. Barnes, M. Rosay, W. E. Maas, R. G. Griffin, Phys Chem Chem Phys, 12, 5911 (2010).CrossRefGoogle Scholar
  2. 2.
    G. T. Debelouchina, G. W. Platt, M. J. Bayro, S. E. Radford, R. G. Griffin, J Am Chem Soc, 132, 17077 (2010).Google Scholar
  3. 3.
    K. Iwata, T. Fujiwara, Y. Matsuki, H. Akutsu, S. Takahashi, H. Naiki, Y. Goto, Proc. Natl. Acad. Sci. USA, 103, 18119 (2006).CrossRefGoogle Scholar
  4. 4.
    A. K. Paravastu, R. D. Leapman, W.-M. Yau, R. Tycko, Proc. Natl. Acad. Sci. USA, 105, 18349 (2008).CrossRefGoogle Scholar
  5. 5.
    C. Wasmer, A. Lange, H. Van Melckebeke, A. B. Siemer, R. Riek, B. H. Meier, Science, 319, 1523 (2008).CrossRefGoogle Scholar
  6. 6.
    C. Ader, R. Schneider, S. Hornig, P. Velisetty, E. M. Wilson, A. Lange, K. Giller, I. Ohmert, M. F. Martin-Eauclaire, D. Trauner, S. Becker, O. Pongs, M. Baldus, Nat Struct Mol Biol, 15, 605 (2008).CrossRefGoogle Scholar
  7. 7.
    V. S. Bajaj, M. L. Mak-Jurkauskas, M. Belenky, J. Herzfeld, R. G. Griffin, Proc. Natl Acad Sci USA, 106, 9244 (2009).CrossRefGoogle Scholar
  8. 8.
    M. Etzkorn, S. Martell, O. C. Andronesi, K. Seidel, M. Engelhard, M. Baldus, Angew. Chem. Int. Ed., 46, 459 (2007).CrossRefGoogle Scholar
  9. 9.
    M. E. Ward, L. Shi, E. Lake, S. Krishnamurthy, H. Hutchins, L. S. Brown, V. Ladizhansky, J Am Chem Soc, 133, 17434 (2011).CrossRefGoogle Scholar
  10. 10.
    M. Lelli, D. Gajan, A. Lesage, M. A. Caporini, V. Vitzthum, P. Mieville, F. Heroguel, F. Rascon, A. Roussey, C. Thieuleux, M. Boualleg, L. Veyre, G. Bodenhausen, C. Coperet, L. Emsley, J Am Chem Soc, 133, 2104 (2011).CrossRefGoogle Scholar
  11. 11.
    A. Zagdoun, A. J. Rossini, D. Gajan, A. Bourdolle, O. Ouari, M. Rosay, W. E. Maas, P. Tordo, M. Lelli, L. Emsley, A. Lesage, C. Coperet, Chem Commun (Camb), in press. (2011).Google Scholar
  12. 12.
    V. S. Bajaj, M. K. Hornstein, K. E. Kreischer, J. R. Sirigiri, P. P. Woskov, M. L. Mak-Jurkauskas, J. Herzfeld, R. J. Temkin, R. G. Griffin, J. Magn. Reson., 189, 251 (2007).CrossRefGoogle Scholar
  13. 13.
    T. Idehara, K. Kosuga, L. Agusu, R. Ikeda, I. Ogawa, T. Saito, Y. Matsuki, K. Ueda, T. Fujiwara, J Infrared Millim Teraherz., 31, 775 (2010).CrossRefGoogle Scholar
  14. 14.
    E. A. Nanni, A. B. Barnes, R. G. Griffin, R. J. Temkin, IEEE Trans. Teraherz. Tech., 1, 145 (2011).CrossRefGoogle Scholar
  15. 15.
    K. N. Hu, Solid State Nucl Mag, 40, 31 (2011).CrossRefGoogle Scholar
  16. 16.
    Y. Matsuki, T. Maly, O. Ouari, H. Karoui, F. Le Moigne, E. Rizzato, S. Lyubenova, J. Herzfeld, T. Prisner, P. Tordo, R. G. Griffin, Angew Chem Int Ed, 48, 4996 (2009).CrossRefGoogle Scholar
  17. 17.
    C. S. Song, K. N. Hu, C. G. Joo, T. M. Swager, R. G. Griffin, J Am Chem Soc, 128, 11385 (2006).CrossRefGoogle Scholar
  18. 18.
    C. G. Joo, A. Casey, C. J. Turner, R. G. Griffin, J Am Chem Soc, 131, 12 (2009).CrossRefGoogle Scholar
  19. 19.
    V. Vitzthum, M. A. Caporini, G. Bodenhausen, J. Magn. Reson., 205, 177 (2010).CrossRefGoogle Scholar
  20. 20.
    U. Akbey, W. T. Franks, A. Linden, S. Lange, R. G. Griffin, B. J. van Rossum, H. Oschkinat, Angew Chem Int Ed, 49, 7803 (2010).CrossRefGoogle Scholar
  21. 21.
    A. B. Barnes, B. Corzilius, M. L. Mak-Jurkauskas, L. B. Andreas, V. S. Bajaj, Y. Matsuki, M. L. Belenky, J. Lugtenburg, J. R. Sirigiri, R. J. Temkin, J. Herzfeld, R. G. Griffin, Phys Chem Chem Phys, 12, 5861 (2010).CrossRefGoogle Scholar
  22. 22.
    M. J. Bayro, G. T. Debelouchina, M. T. Eddy, N. R. Birkett, C. E. MacPhee, M. Rosay, W. E. Maas, C. M. Dobson, R. G. Griffin, J Am Chem Soc, 133, 13967 (2011).CrossRefGoogle Scholar
  23. 23.
    L. R. Becerra, G. J. Gerfen, R. J. Temkin, D. J. Singel, R. G. Griffin, Phys Rev Lett, 71, 3561 (1993).CrossRefGoogle Scholar
  24. 24.
    Y. Matsuki, H. Takahashi, K. Ueda, T. Idehara, I. Ogawa, M. Toda, H. Akutsu, T. Fujiwara, Phys Chem Chem Phys, 12, 5799 (2010).CrossRefGoogle Scholar
  25. 25.
    T. Maly, G. T. Debelouchina, V. S. Bajaj, K. N. Hu, C. G. Joo, M. L. Mak-Jurkauskas, J. R. Sirigiri, P. C. A. van der Wel, J. Herzfeld, R. J. Temkin, R. G. Griffin, J Chem Phys, 128, 052211 (2008).Google Scholar
  26. 26.
    K. D. Hong, G. F. Brand, T. Idehara, J Appl Phys, 74, 5250 (1993).CrossRefGoogle Scholar
  27. 27.
    T. Idehara, I. Ogawa, S. Mitsudo, M. Pereyaslavets, N. Nishida, K. Yoshida, IEEE Trans. Plasma Sci, 27, 340 (1999).CrossRefGoogle Scholar
  28. 28.
    T. Idehara, T. Tatsukawa, H. Tanabe, S. Matsumoto, K. Kunieda, K. Hemmi, T. Kanemaki, Phys Fluids B-Plasma, 3, 1766 (1991).CrossRefGoogle Scholar
  29. 29.
    M. Rosay, L. Tometich, S. Pawsey, R. Bader, R. Schauwecker, M. Blank, P. M. Borchard, S. R. Cauffman, K. L. Felch, R. T. Weber, R. J. Temkin, R. G. Griffin, W. E. Maas, Phys Chem Chem Phys, 12, 5850 (2010).CrossRefGoogle Scholar
  30. 30.
    M. K. Hornstein, V. S. Bajaj, R. G. Griffin, R. J. Temkin, IEEE Trans Plasma Sci IEEE Nucl Plasma Sci Soc, 34, 524 (2006).CrossRefGoogle Scholar
  31. 31.
    A. C. Torrezan, S. T. Han, I. Mastovsky, M. A. Shapiro, J. R. Sirigiri, R. J. Temkin, A. B. Barnes, R. G. Griffin, IEEE Trans Plasma Sci IEEE Nucl Plasma Sci Soc, 38, 1150 (2010).CrossRefGoogle Scholar
  32. 32.
    K. N. Hu, G. T. Debelouchina, A. A. Smith, R. G. Griffin, J Chem Phys, 134, 125105 (2011).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Yoh Matsuki
    • 1
  • Keisuke Ueda
    • 1
  • Toshitaka Idehara
    • 2
  • Ryosuke Ikeda
    • 2
  • Kosuke Kosuga
    • 2
  • Isamu Ogawa
    • 2
  • Shinji Nakamura
    • 3
  • Mitsuru Toda
    • 3
  • Takahiro Anai
    • 3
  • Toshimichi Fujiwara
    • 1
  1. 1.Institute for Protein ResearchOsaka UniversityOsakaJapan
  2. 2.Research Center for Development of Far-Infrared RegionUniversity of FukuiFukuiJapan
  3. 3.JEOL RESONANCETokyoJapan

Personalised recommendations