Development of DNP-Enhanced High-Resolution Solid-State NMR System for the Characterization of the Surface Structure of Polymer Materials

  • Fumitaka Horii
  • Toshitaka Idehara
  • Yutaka Fujii
  • Isamu Ogawa
  • Akifumi Horii
  • George Entzminger
  • F. David Doty


A dynamic nuclear polarization (DNP)-enhanced cross-polarization/magic-angle spinning (DNP/CP/MAS) NMR system has been developed by combining a 200 MHz Chemagnetics CMX-200 spectrometer operating at 4.7 T with a high-power 131.5 GHz Gyrotron FU CW IV. The 30 W sub-THz wave generated in a long pulse TE \( _{{41}}^{{(1)}} \) mode with a frequency of 5 Hz was successfully transmitted to the modified Doty Scientific low-temperature CP/MAS probe through copper smooth-wall circular waveguides. Since serious RF noises on NMR signals by arcing in the electric circuit of the probe and undesired sample heating were induced by the continuous sub-THz wave pulse irradiation with higher powers, the on-off sub-THz wave pulse irradiation synchronized with the NMR detection was developed and the appropriate setting of the irradiation time and the cooling time corresponding to the non-irradiation time was found to be very effective for the suppression of the arcing and the sample heating. The attainable maximum DNP enhancement was more than 30 folds for C1 13 C-enriched D-glucose dissolved in the frozen medium containing mono-radical 4-amino-TEMPO. The first DNP/CP/MAS 13 C NMR spectra of poly(methyl methacrylate) (PMMA) sub-micron particles were obtained at the dispersed state in the same frozen medium, indicating that DNP-enhanced 1H spins effectively diffuse from the medium to the PMMA particles through their surface and are detected as high-resolution 13 C spectra in the surficial region to which the 1H spins reach. On the basis of these results, the possibility of the DNP/CP/MAS NMR characterization of the surface structure of nanomaterials including polymer materials was discussed.


DNP NMR CP/MAS NMR Gyrotron Surface-structure analysis Polymer fine particles 



We are grateful to Dr. Akiyoshi Kusaka of Central R&D Laboratory, Sekisui Plastics Co., Ltd., for kindly providing freeze-dried PMMA sub-micron particles.


  1. 1.
    Bajaj, V. S., Hornstein, M. K., Kreischer, K. E., Sirigiri, J. R., Woskov, P. P., Mak-Jurkauskas, M. L., Herzfeld, J., Temkin, R. J., Griffin, R. G., J. Magn. Reson., 189, 251–279 (2007).CrossRefGoogle Scholar
  2. 2.
    Maly,T, Debelouchina, G. T., Bajaj, V. S., Hu, K.-N., Joo, C.-G., Mak–Jurkauskas, M. L., Sirigiri, J. R., van der Wel, P. C. A., Herzfeld, J., Temkin, R. J., Griffin, R. G., J. Chem. Phys., 128, 052211 (2008).Google Scholar
  3. 3.
    Barnes, A. B., Mak-Jurkauskas, M. L., Matsuki, Y., Bajaj, V. S., van der Wel, P. C. A., DeRocher, R., Bryant, J., Sirigiri, J. R., Temkin, R. J., Lugtenburg, J., Herzfeld, J., Griffin, R. G., J. Magn. Reson., 198, 261–270 (2009).CrossRefGoogle Scholar
  4. 4.
    Y. Matsuki, H. Takahashi, K. Ueda, T. Idehara, I. Ogawa, M. Toda, H. Akutsu, T. Fujiwara, Phys. Chem. Chem. Phys., 12, 5799–5803 (2010).CrossRefGoogle Scholar
  5. 5.
    T. Idehara, K. Kosuga, L. Agusu, R. Ikeda, I. Ogawa, T. Saito, Y. Matsuki, K. Ueda, T. Fujiwara, J. Infrared Millim. Wave, 31, 775–790 (2010).Google Scholar
  6. 6.
    E. V. Kryukov, K. J. Pike, T. K. Y. Tam, M. E. Newton, M. E. Smith, R. Dupree, Phys. Chem. Chem. Phys., 13, 4372–4380 (2011).CrossRefGoogle Scholar
  7. 7.
    T. Idehara, K. Kosuga, L. Agusu, I. Ogawa, H. Takahashi, M. E. Smith, R. Dupree, J. Infrared Millim. Wave, 31, 763–774 (2010).Google Scholar
  8. 8.
    Wind, R.A., Duijvestijn, M. J., van der Lugt, C., Manenschijn, A., Vriend, J., Prog. Nucl. Magn. Reson. Spectr., 17, 33 (1985).CrossRefGoogle Scholar
  9. 9.
    Chang, T. H., Idehara, T., Ogawa, I., Agusu, L., Kobayashi, S., J. Appl. Phys., 105, 063304 (2009).CrossRefGoogle Scholar
  10. 10.
    C. Song, K.-N. Hu, C.-G. Joo, T. M. Swager, R. G. Griffin, J. Am. Chem. Soc., 128, 11385–11390 (2006).CrossRefGoogle Scholar
  11. 11.
    Matsuki, Y., Maly, T., Ouari O., Karoui, H., Moigne, F. L., Rizzato, E., Lyubenova, S., Herzfeld, J., Prisner, T., Tordo, P., Griffin, R. G., Angew. Chem. Int. Ed., 48, 4996 (2009).CrossRefGoogle Scholar
  12. 12.
    For example, H. Tsuji, S. Kamo, F. Horii, Polymer, 51, 2215–2220 (2010). Related references there in.Google Scholar
  13. 13.
    T. F. Kemp, G. Balakrishnan, K. J. Pike, M. E. Smith, R. Dupree, J. Magn. Reson., 204, 169–172 (2010).Google Scholar
  14. 14.
    Bielecki, D. P. Burum, J. Magn. Reson., A 116, 215–220 (1995).Google Scholar
  15. 15.
    K. R. Thurber, R. Tycko, J. Magn. Reson., 196, 84–87 (2009).Google Scholar
  16. 16.
    T. Hori, T. Idehara, H. Sasagawa, A. Kimura, I. Ogawa, and S. Mitsudo, Rev. Sci. Instr., 76, 023502 (2005).CrossRefGoogle Scholar
  17. 17.
    C. T. Farrar, D. A. Hall, G. J. Gerfen, S. J. Inati, R. G. Griffin, J. Chem. Phys., 114, 4922–4933 (2001).Google Scholar
  18. 18.
    J. R. Havens, D. L. VanderHart, Macromolecules, 18, 1663–1676 (1985).CrossRefGoogle Scholar
  19. 19.
    K. Masuda, M. Adachi, A. Hirai, H. Yamamoto, H. Kaji, and F. Horii, Solid-State NMR, 23, 198–212 (2003).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Fumitaka Horii
    • 1
    • 2
  • Toshitaka Idehara
    • 1
  • Yutaka Fujii
    • 1
  • Isamu Ogawa
    • 1
  • Akifumi Horii
    • 2
  • George Entzminger
    • 3
  • F. David Doty
    • 3
  1. 1.Research Center for Development of Far-Infrared RegionUniversity of FukuiFukuiJapan
  2. 2.Phi Creative, IncKyotoJapan
  3. 3.Doty Scientific, IncColumbiaUSA

Personalised recommendations