Advertisement

Development and Applications of High—Frequency Gyrotrons in FIR FU Covering the sub-THz to THz Range

  • Toshitaka Idehara
  • Svilen Petrov Sabchevski
Article

Abstract

Powerful sources of coherent radiation in the sub-terahertz and in the terahertz frequency range of the electromagnetic spectrum are necessary for a great and continuously expanding number of applications in the physical research and in various advanced technological processes as well as in radars, communication systems, for remote sensing and inspection etc.. In recent years, a spectacular progress in the development of various gyro-devices and in particular of the powerful high frequency (sub-terahertz and terahertz) gyrotron oscillators has demonstrated a remarkable potential for bridging the so-called terahertz power gap and stimulated many novel and prospective applications. In this review paper we outline two series of such devices, namely the Gyrotron FU Series which includes pulsed gyrotrons and Gyrotron FU CW Series which consist of tubes operated in a CW (continuous wave) or long pulse mode, both developed at the FIR FU Center. We present the most remarkable achievements of these devices and illustrate their applications by some characteristic examples. An outlook for the further extension of the Gyrotron FU CW Series is also provided.

Keywords

High—frequency gyrotrons Sub—terahertz and terahertz technologies DNP-NMR spectroscopy ESR spectroscopy HFS of positronium 

Notes

Acknowledgements

This work was supported partially by the Special Fund for Education and Research from Ministry of Education, Culture, Sports, Science and Technology (MEXT) in Japan and by SENTAN Project of Japan Science and Technology Agency (JST).

References

  1. 1.
    M. Thumm, State-of-the-Art of High Power Gyro-Devices and Free Electron Masers (Update 2010), KIT Scientific Reports 7575 (KIT Scientific Publishing, 2011) 1–131.Google Scholar
  2. 2.
    T. Idehara, T. Saito, I. Ogawa, S. Mitsudo, Y. Tatematsu, S. Sabchevski, The potential of the gyrotrons for development of the sub-terahertz and the terahertz frequency range – A review of novel and prospective applications, Thin Solid Films, 517 (2008) 1503–1506.CrossRefGoogle Scholar
  3. 3.
    V. Bratman, M. Glyavin, T. Idehara, Y. Kalynov, A. Luchinin, V. Manuilov, S. Mitsudo, I. Ogawa, T. Saito, Y. Tatematsu, V. Zapevalov, Review of Subterahertz and Terahertz Gyrodevices at IAP RAS and FIR FU, IEEE Trans. Plasma Sci., 37 (2009) 36–46.CrossRefGoogle Scholar
  4. 4.
    V.E. Zapevalov, Gyrotron: resources for development, Conf. Digest of the 32-th Int. Conference on Infrared and Millimeter Waves and 15-th Int. Conference on Terahertz Electronics, 2007, Sept.2–Sept.7 Cardiff, UK, Conference Digest, 100–101.Google Scholar
  5. 5.
    N. Kumar, U. Singh, T. P. Singh, A. K. Sinha, A Review on the Applications of High Power, High Frequency Microwave Source: Gyrotron, J Fusion Energy, 30 (2011) 257–276.Google Scholar
  6. 6.
    S. Miyake, Millimeter-Wave Materials Processing in Japan by High-Power Gyrotron, IEEE Trans. Plasma Sci., 31 (2003) 1010–1015.CrossRefGoogle Scholar
  7. 7.
    Yu. Bykov, G. Denisov, A. G. Eremeev, M. Glyavin, V. V. Holoptsev, I. V. Plotnikov, V. Pavlov, 3.5 kW 24 GHz Compact Gyrotron System for Microwave Processing of Materials, Advances in Microwave and Radio Frequency Processing, Part 1 (2006) 24–30.Google Scholar
  8. 8.
    T. Idehara, H. Tsuchiya, O. Watanabe, La Agusu, S. Mitsudo, Int. J. Infrared Millim. Waves, The first experiment of a THz gyrotron with a pulse magnet, 27 (2006) 319–331.Google Scholar
  9. 9.
    M.Yu. Glyavin, A. G. Luchinin, G.Yu. Golubiatnikov, Generation of 1.5-kW, 1-THz Coherent Radiation from a Gyrotron with a Pulsed Magnetic Field, Phys. Rev. Lett., 100 (2008) 015101.CrossRefGoogle Scholar
  10. 10.
    M.V. Kartikeyan, E. Borie, M.K.A. Thumm, GYROTRONS High Power Microwave and Millimeter Wave Technology (Springer, 2003) .Google Scholar
  11. 11.
    G. Nusinovich, Introduction to the Physics of Gyrotrons (The Johns Hopkins University Press, 2004).Google Scholar
  12. 12.
    S. E. Tsimring, Electron Beams and Microwave Vacuum Electronics (Wiley-Interscience, 2007).Google Scholar
  13. 13.
    K. R. Chu, The Electron Cyclotron Maser, Rev. of Modern Phys., 76 (2004) 489.CrossRefGoogle Scholar
  14. 14.
    G. Nusinovich, Terahertz Gyrotrons, Proc. 36 Int. Conf. on Infrared, Millimeter and Therahertz Waves IRMMW-THz 2011 (2–7 Oct, 2011, Houston, USA) 1–2.Google Scholar
  15. 15.
    T. Idehara, I. Ogawa, S. Mitsudo, Y. Iwata, S. Watanabe, Y. Itakura, K. Ohashi H. Kobayashi, T. Yokoyama, V.E. Zapevalov, M. Y. Glyavin, A.N. Kuftin, O.V. Malygin, S.P. Sabchevski, A High Harmonic Gyrotron with an Axis-Encircling Electron Beam and a Permanent Magnet, IEEE Trans. Plasma Sci., 32(2004) 903–909.CrossRefGoogle Scholar
  16. 16.
    H.Hoshizuki, K.Matsuura, S.Mitsudo, T.Idehara, V.E. Zapevalov, O.V. Malygin, V.I. Khizhnjak, T.Ueda, M.Furuiti, A. Kitano, H.Nishi, J.Ishibashi, Development of the material processing system by using a 300 GHz gyrotron, Proc. 30-th Int. Conference on Infrared and Millimeter Waves and 13-th Int. Conference on Terahertz Electronics (Sept.19–Sept.23 Williamsburg, Virginia), Conference Digest (2005) 375–376.Google Scholar
  17. 17.
    T. Saito, T. Nakano, H. Hoshizuki, K. Sakai, Y. Tatematsu, S. Mitsudo, I. Ogawa, T. Idehara, V. E. Zapevalov, Performance Test of CW 300 GHz Gyrotron FU CW I, Int. J Infrared Millimeter Waves, 28 (2007) 1063–1078.CrossRefGoogle Scholar
  18. 18.
    S. Sabchevski, T. Saito, T. Idehara, T. Nakano, Y. Tatematsu, Simulation of Mode Interaction in the Gyrotron FU CW I, Int. Journal of Infrared and Millimeter Waves, 28 (2007) 1079–1093.CrossRefGoogle Scholar
  19. 19.
    T. Saito, T. Nakamo, Y. Tatematsu, S. Mitusdo, T. Idehara, V.E. Zapevalov, Operation improvement of CW 300 GHz gyrotron FU CW I, Proc. 33rd Intern. Conference on Infrared Millimeter and Terahertz Waves, IRMMW-THz 2008 (15–19 Sept. 2008, Pasadena, CA) 1–2.Google Scholar
  20. 20.
    S. Mitsudo, K. Sakai, T. Idehara, T. Saito, V.E. Zapevalov, 300 GHz gyrotron material processing system, Proc. Joint 31st International Conference on Infrared Millimeter Waves and 14th International Conference on Terahertz Electronics, IRMMW–THz 2006 (18–22 Sept. 2006, Shanghai) 572 – 572.Google Scholar
  21. 21.
    L. R. Becerra, G. J. Gerfen, R. J. Temkin, D. J. Singel, R. Griffin, Dynamic Nuclear Polarization with a Cyclotron Resonance Maser at 5 T, Phys. Rev. Lett., 71 (1993) 3561-3564.CrossRefGoogle Scholar
  22. 22.
    S.-T. Han, R. G. Griffin, K.-N. Hu, C.-G. Joo, C. D. Joye, J. R. Sirigiri, R. J. Temkin, A. C. Torrezan, P. P. Woskov, Spectral Characteristics of a 140-GHz Long-Pulsed Gyrotron, IEEE Trans. PlasmaSci., 35 (2007) 559564.CrossRefGoogle Scholar
  23. 23.
    V. S. Bajaj, M. K. Hornstein, K. E. Kreischer, J. R. Sirigiri, P. P. Woskov, M. L. Mak-Jurkauskas, J. Herzfeld, R. J. Temkin, R. G. Griffin, 250 GHz CW gyrotron oscillator for dynamic nuclear polarization in biological solid state NMR, Journal of Magnetic Resonance, 189, ( 2007) 251–279.CrossRefGoogle Scholar
  24. 24.
    A. C. Torrezan, S.-T. Han, I. Mastovsky, M. A. Shapiro, J. R. Sirigiri, R. J. Temkin, A. B. Barnes, R. G. Griffin, Continuous-Wave Operation of a Frequency-Tunable 460-GHz Second-Harmonic Gyrotron for Enhanced Nuclear Magnetic Resonance, IEEE Trans. Plasma Sci., 38 (2010) 1150–1159.CrossRefGoogle Scholar
  25. 25.
    E.A. Nanni, A. B. Barnes, R.G. Griffin, R. J. Temkin, THz Dynamic Nuclear Polarization NMR, IEEE Trans. Thz Sci. Technolog., 1 (2011) 145–163.CrossRefGoogle Scholar
  26. 26.
    J. H. Booske, R.J. Dobbs, C. D. Joye, C. L. Kory, G. R. Neil, G.-S. Park, J. Park, R. J. Temkin, Vacuum Electronic High Power Terahertz Sources, IEEE Trans. Thz Sci. Technolog., 1 (2011) 54–75.CrossRefGoogle Scholar
  27. 27.
    T. Idehara, T. Saito, I. Ogawa, S. Mitsudo, Y. Tatematsu, A. La Agusu, H. Mori, S. Kobayashi, Development of Terahertz FU CW Series for DNP, Appl. Magn. Resonance, 34 (2008) 265–275.CrossRefGoogle Scholar
  28. 28.
    T. Idehara, T. Saito, H. Mori, H. Tsuchiya, A. La Agusu, S. Mitsudo, Long Pulse Operation of the THz Gyrotron with a Pulse Magnet, Int. J Infrared Millimeter Waves, 29 (2008) 131–141.CrossRefGoogle Scholar
  29. 29.
    T. Idehara, H. Tsuchiya, La Agusu, H. Mori, H. Murase, T. Saito, I. Ogawa and S. Mitsudo, The 1 THz Gyrotron at Fukui University, Digest of Joint 32nd Int. Conf. on Infrared and Millimeter Waves and 15-th Int. Conf. on Terahertz Electronics (IRMMW–THz 2007) 1, 309–311 (2007).Google Scholar
  30. 30.
    A. LaAgusu, T. Idehara, H. Mori, T. Saito, I. Ogawa, and S. Mitsudo, Design of a CW1 THz gyrotron (gyrotron FU CW III) using a 20 T superconducting magnet, Int. J. Infrared Millim. Waves, 28 (2007) 315–328.CrossRefGoogle Scholar
  31. 31.
    T. Idehara, I. Ogawa, H. Mori, S. Kobayashi, S. Mitsudo, T. Saito, A THz Gyrotron FU CW III with a 20T superconducting magnet, J. Plasma Fusion Res. SERIES, 8 (2009) 1508–1511.Google Scholar
  32. 32.
    I. Ogawa, T. Idehara, S. Kobayashi, T.H. Chang, F. Horii, T. Saito, Development of continuously frequency tunable gyrotron and its application to 200 MHz DNP–NMR spectroscopy as a radiation source, Proc. 34th International Conference on Infrared, Millimeter, and Terahertz Waves IRMMW-THz 2009 (21–25 Sept. 2009, Busan, Korea) 1-2.Google Scholar
  33. 33.
    T.H. Chang, T. Idehara, I. Ogawa, L. Agusu, S. Kobayashi, Frequency tunable gyrotron using backward-wave components, J. Appl. Physics, 105 (2009) 063304-1–4.Google Scholar
  34. 34.
    T. Idehara, Y. Urushizaki, L. Agusu, I. Ogawa, T. Suehara, T. Namba, T., S. Asai, T. Kobayashi, Gyrotron FU CW V for hyperfine structure measurement on positronium, Proc. 34th Int. Conf. IRMMW-THz (Busan, 21–25 Sept. 2009) 1-2.Google Scholar
  35. 35.
    S. Sabchevski, T. Idehara, T. Suehara, S. Asai, T. Saito, I. Ogawa, S. Mitsudo, Y. Tatematsu, T. Namba, T. Kobayashi, H. Saito, Resonant Cavity for Study of the Energy Levels of Positronium. FIR Center Report FIR FU-93 (June, 2008) 1–24. Available online at: http://fir.u-fukui.ac.jp/FIR_FU93S.pdf.
  36. 36.
    T Suehara, A Miyazaki, A Ishida, T Namba, S Asai, T Kobayashi, H Saito, M Yoshida, T Idehara, I Ogawa, S Kobayashi, Y Urushizaki and S Sabchevski, Probing the Energy Structure of Positronium with a 203 GHz Fabry–Perot Cavity, Journal of Physics: Conference Series, 199 (2010) 012002.CrossRefGoogle Scholar
  37. 37.
    O. Dumbrajs, T. Idehara, Frequency Tunable Gyrotron FU CW VA for Measuring Hyperfine Split of Positronium, J Infrared Millimeter Terahz Waves 31 (2010) 1265–1270.CrossRefGoogle Scholar
  38. 38.
    T. Idehara, K. Kosuga, La Agusu, R. Ikeda, I. Ogawa, T. Saito, Y. Matsuki, K. Ueda, T. Fujiwara, Continuously Frequency Tunable High Power Sub-THz Radiation Source–Gyrotron FU CW VI for 600 MHz DNP–NMR Spectroscopy, J Infrared Milli Terahz Waves, 31 (2010) 775–790.CrossRefGoogle Scholar
  39. 39.
    T. Idehara, K. Kosuga, A. La Agusu, I. Ogawa, H. Takahashi, M. E. Smith, R. Dupree, Gyrotron FU CW VII for 300 MHz and 600 MHz DNP-NMR Spectroscopy, J Infrared Milli Terahz Waves, 31 (2010) 763–774.CrossRefGoogle Scholar
  40. 40.
    S. Mitsudo, N. Nakagawa, Y. Ohashi, T. Katayama, Y. Tatematsu, I. Ogawa, T. Idehara, T. Saito, Development of a sub-THz CW gyrotron for the millimeter wave pulsed ESR spectrometer, Proc. 35th International Conference on Infrared, Millimeter and THz Waves IRMMW-THz 2010, (September 5–10, 2010, Angelicum, Rome, Italy) 1–2.Google Scholar
  41. 41.
    S. Sabchevski, T. Idehara, Design of a Compact Sub-Terahertz Gyrotron for Spectroscopic Applications, J. Infrared Millimeter and Terahertz Waves, 31(2010) 934–948.Google Scholar
  42. 42.
    O. Dumbrajs, T. Idehara, S. Sabchevski, Design of an Optimized Resonant Cavity for a Compact Sub-Terahertz Gyrotron, J. Infrared Millimeter and Terahertz Waves, 31(2010) 1115–1125.CrossRefGoogle Scholar
  43. 43.
    J. Mudiganti, T. Idehara, Y. Tatematsu, R. Ikeda, Y. Yamaguchi, T. Saito, I. Ogawa, S. Mitsudo, T. Fujiwara, Y. Matsuki, K. Ueda, Design of a 394.6 GHz Compact Gyrotron FU CW CI for 600 MHz DNP-NMR Spectroscopy, Proc. 36 Int. Conf. on Infrared, Millimeter and Therahertz Waves, IRMMW-THz 2011 (2–7 Oct, 2011, Houston, USA) 1–2.Google Scholar
  44. 44.
    Y. Tatematsu, Y. Yamaguchi, T. Idehara, T. Ozeki, N. Yamada, R. Ikeda, T. Kawase, J. Aiba, H. Kato, T. Kanemaki, I. Ogawa, T. Saito, Development of Gaussian beam output gyrotrons FU CW GI and FU CW GII, Proc. 36 Int. Conf. on Infrared, Millimeter and Therahertz Waves, IRMMW-THz 2011 (2–7 Oct, 2011, Houston, USA) 1–2.Google Scholar
  45. 45.
    S. Sabchevski et al., Physical Models and Computer Codes for CAD and Study of Gyrotrons, Proc. 3rd Intern. Workshop on Far-Infrared Technologies, p. 15a_4 (2010).Google Scholar
  46. 46.
    R.G. Griffin, T.F. Prisner, High field dynamic polarization–the renaissance, Phys. Chem. Chem. Phys., 12 (2010) 5737–5740.CrossRefGoogle Scholar
  47. 47.
    Y. Matsuki, H. Takahashi, K. Ueda, T. Idehara, I. Ogawa, M. Toda, H. Akutsu, T. Fujiwara, Dynamic nuclear polarization experiments at 14.1 T for solid-state NMR, Physical Chemistry Chemical Physics, 12 (2010) 5799–5803.CrossRefGoogle Scholar
  48. 48.
    F. Horii, T. Idehara, Y. Fujii, I. Ogawa, A. Horii, G. Entzminger, F.D. Doty, 200 MHz DNP NMR spectroscopy with a 131 GHz gyrotron for the analysis of polymer surface, Proc. 36 Int. Conf. on Infrared, Millimeter and Therahertz Waves IRMMW-THz 2011 (2–7 Oct, 2011, Houston, USA) 1–2.Google Scholar
  49. 49.
    R. Dupree, M. E. Smith, M. E. Newton, K. J. Pike, A.P. Howes, R. Kowalczyk, E. Krjukov, T. F. Kemp, H. Takahashi, A. Lovejoy, G. M. Smith, D. Bolton, T. Idehara, K. Kosuga, La Agusu, I. Ogawa, Towards DNP enhanced solid-state NMR at 14.1 T, Proc. 3rd Intern. Workshop on Far Infrared Technologies IW-FIRT 2010 (15–17 March, 2010, University of Fukui, Japan) 17a–3.Google Scholar
  50. 50.
    M. Toda, Y. Fujii, S. Mitsudo, I. Ogawa, T. Idehara, T. Saito, H. Ito, M. Chiba, X-band 1H-DNP Experiments and High-Power Subterahertz Wave Irradiation Effect on BDPA-doped Toluene Solution, Appl. Magn. Reson., 34 (2008) 277–287.CrossRefGoogle Scholar
  51. 51.
    S. Mitsudo, T. Higuchi, K. Kanazawa, T. Idehara, I. Ogawa, High-field ESR measurements using Gyrotron FU series as radiation sources, J. Phys. Soc. Japan, 72 Suppl. B (2003) 172–176.Google Scholar
  52. 52.
    S. K. Misra, Multifrequency Electron Paramagnetic Resonance: Theory and Applications (Wiley-VCH, Verlag&Co. KGaA, 2011) ISBN:978-3-527-40779-8.Google Scholar
  53. 53.
    J. Goulon, A. Rogalev, F. Wilhelm, Ch. Goulon-Ginet, G. Goujon, Element-selective X-ray detected magnetic resonance: a novel application of synchrotron radiation, J. Synchrotron Rad., 14 (2007) 257-271CrossRefGoogle Scholar
  54. 54.
    A. Rogalev, J. Goulon, F. Wilhelm, G. Goujon, X-Ray detected magnetic resonance: a new tool to probe magnetization dynamics, Proc. 3rd Intern. Workshop on Far Infrared Technologies IW-FIRT 2010 (15–17 March, 2010, University of Fukui, Japan) 16p–3.Google Scholar
  55. 55.
    T. Idehara, L. Agusu, I. Ogawa, S. Mitsudo, K. Kosuga, T. Saito, Development of medium power sub-THz CW gyrotrons for high power THz spectroscopy, Proc. 34th Int. Conf. IRMMW-THz (Busan, 21–25 Sep 2009) 1-2.Google Scholar
  56. 56.
    J. Goulon, A. Rogalev, F. Wilhelm, G. Goujon, X-Ray Detected Magnetic Resonance: A New Spectroscopic Tool, In E. Beaurepaire, H. Bulou, F. Scheurer, J.-P. Kappler (Eds.), Magnetism and Synchrotron Radiation: New Trends, Springer Proceedings in Physics, Vol. 133 (1st Edition, 2010, XXI, 421 p. 207 illus.)Google Scholar
  57. 57.
    Suehara, A. Ishida, T. Namba, S. Asai, T. Kobayashi, H. Saito, M. Yoshida, T. Idehara, I. Ogawa, S. Kobayashi and S. Sabchevski, The First Direct Measurement of the Hyperfine Splitting in Positronium, Journal of Physics: Conference Series, 194, (2009) 152010CrossRefGoogle Scholar
  58. 58.
    G. Akimoto, A. Ishida, Y. Sasaki, A. Miyazaki, K. Kato, T. Suehara, T. Namba, S. Asai, T. Kobayashi, H. Saito, M. Yoshida, K. Tanaka, A. Yamamoto, Y. Urushizaki, I. Ogawa, T. Idehara, S. Sabchevski, Precise Measurement of the HFS of Positronium using the Zeeman Effect I: Experimental Set-up and RF System, Journal of Physics: Conference Series, 225 (2010) 012001.CrossRefGoogle Scholar
  59. 59.
    A. Ishida, G. Akimoto, Y. Sasaki, A. Miyazaki, K. Kato, T. Suehara, T. Namba, S. Asai, T. Kobayashi, H. Saito, M. Yoshida, K. Tanaka, A. Yamamoto, Y. Urushizaki, I. Ogawa, T. Idehara, S. Sabchevski, Precise measurement of HFS of positronium using Zeeman effect, Journal of Physics: Conference Series, 225 (2010) 012019A.CrossRefGoogle Scholar
  60. 60.
    A. Miyazaki, T. Suehara, A. Ishida, T. Namba, S. Asai, T. Kobayashi, H. Saito, M. Yoshida, T. Idehara, I. Ogawa, Y. Urushizaki, S. Sabchevski, Experiment for the First Direct Measurement of the Hyper-fine Splitting of Positronium, Journal of Physics: Conference Series, Vol. 225 (2010) 012037.CrossRefGoogle Scholar
  61. 61.
    A. Miyazaki, T. Yamazaki, T. Suehara, T. Namba, S. Asai, T. Kobayashi, H. Saito, T. Idehara, I. Ogawa, Y. Urushizaki, S. Sabchevski, New Experiment for the First Direct Measurement of Positronium Hyperfine Splitting with sub-THz Light, Materials Science Forum, 666 (2011) 133–137.CrossRefGoogle Scholar
  62. 62.
    A. Miyazaki, T. Yamazaki1, T. Suehara, T. Namba, S. Asai1, T. Kobayashi, H. Saito, T. Idehara, I. Ogawa, S. Sabchevski, Direct Measurement of Positronium Hyperfine Splitting - Testing Fundamental Physics with sub-THz Gyrotron, Proc. 36 Int. Conf. on Infrared, Millimeter and Therahertz Waves IRMMW-THz 2011 (2-7 Oct, 2011, Houston, USA) 1-2 (F2A.5.1).Google Scholar
  63. 63.
    T. Tatsukawa, A. Doi, M. Teranaka, H. Takashima, F. Goda, T. Idehara, I. Ogawa, S. Mitsudo, T. Kanemaki, Development of Submillimeter Wave Catheter Transmitting a Gyrotron Output for Irradiation on Living Bodies, Int. I. Infrared and Millimeter Waves, 21 (2000) 1155–1167.CrossRefGoogle Scholar
  64. 64.
    T. Tatsukawa, A. Doi, M. Teranaka, H. Takashima, F. Goda, T. Idehara, I. Ogawa, T. Kanemaki, S. Nishizawa, Submillimeter Wave Irradiation of Living Bodies using a Gyrotron and a Catheter, Jpn. J. Appl. Phys., 41 (2002) 5486–5489.CrossRefGoogle Scholar
  65. 65.
    T. Tatsukawa, A. Doi, M. Teranaka, T. Idehara, T. Kanemaki, I. Ogawa, S.P. Sabchevski, Submillimeter Wave Irradiation on Living Bodies Using Catheter Waveguide Vent Antennae with Dielectric Rod and Sheet. In: NANOscale Magnetic Oxides and Bio-World, Edited by I. Nedkov and Ph. Tailhades (Heron Press Ltd., Sofia) (2004) 123–138.Google Scholar
  66. 66.
    T. Tatsukawa, A. Doi, M. Teranaka, H. Takashima, F. Goda, S. Watanabe, S. Mitsudo, T. Kanemaki, T. Namba, Millimeter Wave Irradiation and Invasion into Living Bodies Using a Gyrotron as a Radiation Source, Proc. Int. Workshop on Strong Microwaves in Plasma, 2 (2006) 727–731.Google Scholar
  67. 67.
    T. Tatsukawa, A. Doi, M. Teranaka, H. Takashima, F. Goda, S. Watanabe, T. Idehara, T. Kanemaki, T. Namba, Microwave invasion through anti-reflecting layers of dielectrics at millimeter wave irradiation to living bodies, Int. I. Infrared and Millimeter Waves, 26 (2005) 591–606.CrossRefGoogle Scholar
  68. 68.
    M. Teranaka, A. Doi, T. Tatsukawa, S. Mitsudo, T. Saito, T. Idehara, T. Kanemaki, T. Namba, Millimeter wave irradiation and invasion into living bodies by the anti-reflecting effect, Proc. 32nd Int. Conference Infrared, Millimeter and Terahertz Waves IRMMW-THz 2007 (2–9 Sept. 2007, Cardiff, UK) 571–572.Google Scholar
  69. 69.
    M. Teranaka, A.Doi,I. Ogawa, T. Saito, T. Idehara, T. Tatsukawa, Millimeter wave irradiation and invasion into living bodies using AR waveguide vent antennas and Gyrotron, Proc. 33rd Int. Conference Infrared, Millimeter and Terahertz Waves IRMMW-THz 2008 (15-19 Sept. 2008, Pasadena, CA) 1–2.Google Scholar
  70. 70.
    N. Miyoshi, Y. Fukunaga, I. Ogawa, T. Idehara, Application for hyperthermia treatment of an experimental tumor using a gyrotron (107, 203 GHz), Proc. 34th Int. Conference Infrared, Millimeter and Terahertz Waves IRMMW-THz 2009 (21-25 Sept. 2009, Busan, Korea), 1–2.Google Scholar
  71. 71.
    N. Miyoshi, S. Ito, I. Ogawa, T. Idehara, Combination treatment of hyperthermia and photodynamic for experimental tumor model using gyrotron (107, 203 GHz), Proc. 35th Int. Conference Infrared, Millimeter and Terahertz Waves IRMMW-THz 2010 (5–10 Sept. 2010, Rome, Italy) 1–2.Google Scholar
  72. 72.
    H. Kamada, K. Yamamoto, A. Matsumura, T. Yamamoto, Y. Nakagawa, Development of JCDS, a computational dosimetry system at JAEA for boron neutron capture therapy, J. Physics: Conference Series, 74 (2007) 0122010.Google Scholar
  73. 73.
    K. Niita, N. Matsuda, Y. Iwamoto, H. Iwase, T. Sato, H. Nakashima, Y. Sakamoto, L. Sihver, "PHITS: Particle and Heavy Ion Transport code System, Version 2.23", JAEA-Data/Code 2010–022 (2010).Google Scholar
  74. 74.
    K. Hirakawa, N. Sekine, Carrier dynamics and dispersive terahertz Bloch gain in semiconductor superlattices , Physica E, 32 (2006) 320-324.CrossRefGoogle Scholar
  75. 75.
    L. Esaki, R. Tsu, Superlattice and negative differential conductivity in semiconductors, IBM J. Res Develop., 14 (1970) 61–65.CrossRefGoogle Scholar
  76. 76.
    Y. Sakasegawa, T. Idehara, Y. Yamaguchi, S. Mitsudo, K. Hirakawa, Current suppression in semiconductor superlattices driven by intense sub-Thz radiation from a gyrotron, Proc. 17th Int. Conf. on Electron Dynamics in Semiconductors, Optoelectronics and Nanostructures EDISON 17 (7–12 August, 2011, Santa Barbara, California) P1.18.Google Scholar
  77. 77.
    S. Mitsudo, M. Thumm, Application of high-power sub-THz gyrotrons to materials processing – this issue.Google Scholar
  78. 78.
    T. Notake, T. Saito, Y. Tatematsu, A. Fujii, S. Ogasawara, L. Agusu, I. Ogawa, T. Idehara, Development of Novel High Power Sub-THz Harmonic Gyrotron, Phys. Rev. Lett., 103 (2009) 225002-1–225002-4.CrossRefGoogle Scholar
  79. 79.
    T. Saito, Y. tatematsu, A. Fujii, S. Ogasawara, N. Yamada, T. Idehara, T. Notake, S. Kubo, T. Shimozuma, K. Tanaka, M. Nishimura, V.N. Manuilov, Development of a High Power Sub Terahertz Pulse Gyrotron for Application to Collective Thomson Scattering, Proc. 3rd Intern. Workshop on Far Infrared Technologies IW-FIRT 2010 (15–17 March, 2010, University of Fukui, Japan) 15p-5.Google Scholar
  80. 80.
    S. Ogasawara, T. Saito, Y. Tatematsu, A. Fujii, N. Yamada, I. Ogawa, T. Idehara, T. Notake, S. Kubo, T. Shimozuma, K. Tanaka, M. Nishiura, V.N. Manuilov, Development of high frequency pulse gyrotron at the second harmonic oscillation, Proc. 3rd Intern. Workshop on Far Infrared Technologies IW-FIRT 2010 (15–17 March, 2010, University of Fukui, Japan) P-11.Google Scholar
  81. 81.
    T. Saito, Y. Tatematsu, N. Yamada, S. Ogasawara, Y. Yamaguchi, T. Idehara, V.N. Manuilov, High Power Sub-THz Radiation from a Gyrotron with Second Harmonic Oscillation, Proc. 36 Int. Conf. on Infrared, Millimeter and Therahertz Waves IRMMW-THz 2011 (2-7 Oct, 2011, Houston, USA) W3A.5.1.Google Scholar
  82. 82.
    Microwaves in Organic Synthesis, Sec. Ed., Edited by A. Loupy (WILEY–VCH Verlag GmbH & Co. KGaA), 2007.Google Scholar
  83. 83.
    C. Kappe, A. Stadler, Microwaves in Organic and Medicinal Chemistry (WILEY-VCH Verlag GmbH & Co. KGaA), 2005.Google Scholar
  84. 84.
    S. Sabchevski, T. Idehara, S. Mitsudo, T. Fujiwara, Conceptual Design Study of a Novel Gyrotron for NMR/DNP Spectroscopy, J. Infrared and Millimeter Waves, 26 (2005) 1241–1264CrossRefGoogle Scholar
  85. 85.
    S. Sabchevski, T. Idehara, Resonant Cavities for Frequency Tunable. Gyrotrons, J. Infrared Millimeter and Terahertz Waves, 29 (2008) 1–22.Google Scholar
  86. 86.
    O. Dumbrajs, G.S. Nusinovich, To the theory of high-power gyrotrons with uptapered resonators, Phys. Plasmas, 053104 (2010).Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Research Center for Development of Far-Infrared RegionUniversity of FukuiFukuiJapan
  2. 2.Institute of Electronics of the Bulgarian Academy of SciencesAssociation EURATOM-INRNESofiaBulgaria

Personalised recommendations