Scalable Microstructured Photoconductive Terahertz Emitters



The development of scalable emitters for pulsed broadband terahertz (THz) radiation is reviewed. Their large active area in the 1 – 100 mm2 range allows for using the full power of state-of-the-art femtosecond lasers for excitation of charge carriers. Large fields for acceleration of the photogenerated carriers are achieved at moderate voltages by interdigitated electrodes. This results in efficient emission of single-cycle THz waves. THz field amplitudes in the range of 300 V/cm and 17 kV/cm are reached for excitation with 10 nJ pulses from Ti:sapphire oscillators and for excitation with 5 μJ pulses from amplified lasers, respectively. The corresponding efficiencies for conversion of near-infrared to THz radiation are 2.5 × 10-4 (oscillator excitation) and 2 × 10-3 (amplifier excitation). In this article the principle of operation of scalable emitters is explained and different technical realizations are described. We demonstrate that the scalable concept provides freedom for designing optimized antenna patterns for different polarization modes. In particular emitters for linearly, radially and azimuthally polarized radiation are discussed. The success story of photoconductive THz emitters is closely linked to the development of mode-locked Ti:sapphire lasers. GaAs is an ideal photoconductive material for THz emitters excited with Ti:sapphire lasers, which are widely used in research laboratories. For many applications, especially in industrial environments, however, fiber-based lasers are strongly preferred due to their lower cost, compactness and extremely stable operation. Designing photoconductive emitters on InGaAs materials, which have a low enough energy gap for excitation with fiber lasers, is challenging due to the electrical properties of the materials. We discuss why the challenges are even larger for microstructured THz emitters as compared to conventional photoconductive antennas and present first results of emitters suitable for excitation with ytterbium-based fiber lasers. Furthermore an alternative concept, namely the lateral photo-Dember emitter, is presented. Due to the strong THz output scalable emitters are well suited for THz systems with fast data acquisition. Here the application of scalable emitters in THz spectrometers without mechanical delay stages, providing THz spectra with 1 GHz spectral resolution and a signal-to-noise ratio of 37 dB within 1 s, is presented. Finally a few highlight experiments with radiation from scalable THz emitters are reviewed. This includes a brief discussion of near-field microscopy experiments as well as an overview over gain studies of quantum-cascade lasers.


Photoconductive terahertz emitter Scalable emitter 


  1. 1.
    M. Tonouchi, Nature Photonics 1, 97 (2007).Google Scholar
  2. 2.
    D. Mittleman (ed.), Sensing with THz Radiation, Springer, Heidelberg, 2002.Google Scholar
  3. 3.
    S. Ganichev, W. Prettl, Intense Terahertz Excitation of Semiconductors, Oxford Univ. Press, USA, 2006.Google Scholar
  4. 4.
    K. Reimann, Rep. Prog. Phys. 70, 1597 (2007).Google Scholar
  5. 5.
    M. van Exter and D. Grischkowsky, Appl. Phys. Lett. 56, 1694, (1990).Google Scholar
  6. 6.
    D. Grischkowsky, S. Keiding, M. van Exter, and Ch. Fattinger, J. Opt. Soc. Am. B 7, 2006 (1990).Google Scholar
  7. 7.
    C. Fattinger and D. Grischkowsky, Appl. Phys. Lett. 54, 490 (1989).Google Scholar
  8. 8.
    B. B. Hu, X.-C. Zhang, and D. H. Auston Appl. Phys. Lett. 56, 506 (1990)Google Scholar
  9. 9.
    T. J. Carrig, G. Rodriguez, T. S. Clement, and A. J. Taylor, Appl. Phys. Lett. 66, 10 (1995).Google Scholar
  10. 10.
    Q. Wu and X.-C. Zhang, Appl. Phys. Lett. 68, 1604 (1996).Google Scholar
  11. 11.
    A. Leitenstorfer, S. Hunsche, J. Shah, M. C. Nuss, and W. H. Knox, Appl. Phys. Lett. 74, 1516 (1999).Google Scholar
  12. 12.
    P. C. M. Planken, H. K. Nienhuys, H. J. Bakker, and T. Wenckebach J. Soc. Am B 18, 313 (2001).Google Scholar
  13. 13.
    T. Löffler, M. Kreß, M. Thomson, T. Hahn, N. Hasegawa, and H. G. Roskos, Semicond. Sci. Technol. 20, 134 (2005).Google Scholar
  14. 14.
    T. Löffler, T. Hahn, M. Thomson, F. Jacob, and H. Roskos, Opt. Express 13, 5353 (2005).Google Scholar
  15. 15.
    J. Hebling, G. Almasi, T. Kozma, and J. Kuhl, Opt. Express 10, 1161 (2002).Google Scholar
  16. 16.
    K.-L. Yeh, J. Hebling, M. C. Hoffmann, and K. A. Nelson, Opt. Commun. 281, 3567 (2008).Google Scholar
  17. 17.
    H. Hamster, A. Sullivan, S. Gordon, W. White, and R. W. Falcone, Phys. Rev. Lett. 71, 2725 (1993).Google Scholar
  18. 18.
    D. J. Cook and R. M. Hochstrasser, Opt. Lett. 25, 1210 (2000).Google Scholar
  19. 19.
    M. D. Thomson, M. Kreß, T. Löffler, and H. G. Roskos Laser Photon. Rev. 1, 349 (2007).Google Scholar
  20. 20.
    N. Karpowicz, X. Lu, and X.-C. Zhang, J. Mod. Opt. 56, 1137 (2009).MATHGoogle Scholar
  21. 21.
    M. C. Hoffmann and J. A. Fülöp, J. Phys. D: Appl. Phys. 44, 083001 (2011).Google Scholar
  22. 22.
    A. Sell, R. Scheu, A. Leitenstorfer, and R. Huber, Appl. Phys. Lett. 93, 251107 (2008).Google Scholar
  23. 23.
    A. Sell, A. Leitenstorfer, and R. Huber, Opt. Lett. 33, 2767 (2008).Google Scholar
  24. 24.
    M. Tani, S. Matsuura, K. Sakai, and S. I. Nakashima, Appl. Optics 36, 7853 (1997).Google Scholar
  25. 25.
    R. Yano, H. Gotoh, Y. Hirayama, S. Miysahita, Y. Kadoya, and T. Hattori, J. Appl. Phys. 97, 103103 (2005).Google Scholar
  26. 26.
    H. Harde and D. Grischkowsky, J. Soc. Am. B 8, 1642 (1991).Google Scholar
  27. 27.
    D. R. Dykaar, B. I. Greene, J. F. Federici, A. F. J. Levi, L. N. Pfeiffer, and R. F. Kopf, Appl. Phys. Lett. 59, 262 (1991).Google Scholar
  28. 28.
    K. A. McIntosh, E. R. Brown, K. B. Nichols, O. B. McMahon, W. F. DiNatale, and T. M. Lyszczarz, Appl. Phys. Lett. 69, 3632 (1996).Google Scholar
  29. 29.
    T.-A. Liu, G.-R. Lin, Y.-C. Lee, S.-C. Wang, M. Tani, H.-H. Wu, and C.-L. Pan, J. Appl. Phys. 98, 013711 (2005).Google Scholar
  30. 30.
    D. H. Auston, Appl. Phys. Lett. 26, 101 (1975).Google Scholar
  31. 31.
    D. H. Auston, K. P. Cheung, and P. R. Smith, Appl. Phys. Lett. 45284 (1984).Google Scholar
  32. 32.
    P. K. Benicewicz, J. P. Roberts, and A. J. Taylor, J. Opt. Soc. Am. B 11, 2533 (1994).Google Scholar
  33. 33.
    E. Budiarto, J. Margolies, S. Jeong, J. Son, and J. Bokor, IEEE J. of Quantum Electron. 32, 1839 (1996).Google Scholar
  34. 34.
    D. You, R. R. Jones, and P. H. Bucksbaum, Opt. Lett. 18, 290 (1993).Google Scholar
  35. 35.
    J. T. Darrow, X.-C. Zhang, and D. H. Auston, IEEE J. Quantum Electron. 28 1607 (1992).Google Scholar
  36. 36.
    A. Dreyhaupt, S. Winnerl, T. Dekorsy, and M. Helm, Appl. Phys. Lett. 86, 121114 (2005).Google Scholar
  37. 37.
    A. Dreyhaupt, S. Winnerl, M. Helm, and T. Dekorsy, Opt. Lett. 31, 1546 (2006).Google Scholar
  38. 38.
    M. Beck, H. Schäfer, G. Klatt, J. Demsar, S. Winnerl, M. Helm and T. Dekorsy, Opt. Express 18, 9251 (2010).Google Scholar
  39. 39.
    M. Suzuki and M. Tonouchi, Appl. Phys. Lett. 86, 051104 (2005).Google Scholar
  40. 40.
    M. Suzuki and M. Tonouchi, Appl. Phys. Lett. 86, 163504 (2005).Google Scholar
  41. 41.
    A. Takazato, M. Kamakura, T. Tmatsui, J. Kitagawa, and Y. Kadoya, Appl. Phys. Lett. 91, 011101 (2007).Google Scholar
  42. 42.
    B. Sartorius, H. Roehle, H. Künzel, J. Böttcher, M. Schlak, D. Stanze, H. Venghaus, and M. Schell, Opt. Express 16, 9565 (2008).Google Scholar
  43. 43.
    H. Roehle, R. J. B. Dietz, H. J. Hensel, J. Böttcher, H. Künzel, D. Stanze, M. Schell, and B. Sartorius, Opt. Express 18, 2296 (2010).Google Scholar
  44. 44.
    F. Peter, S. Winnerl, H. Schneider, M. Helm, and K. Köhler, Appl. Phys. Lett. 93, 101102 (2008).Google Scholar
  45. 45.
    A. Leitenstorfer, S. Hunsche, J. Shah, M. C. Nuss, and W. H. Knox, Phys. Rev. B 61, 16642 (2000).Google Scholar
  46. 46.
    T. Dekorsy, T. Pfeifer, W. Kutt, and H. Kurz, Phys. Rev. B 47, 3842 (1993).Google Scholar
  47. 47.
    G. Rodriguez, S. R. Caceres, and A. J. Taylor, Opt. Lett. 19, 1994 (1994).Google Scholar
  48. 48.
    P. U. Jepsen, R. H. Jacobsen, and S. R. Keiding, J. Opt. Soc. Am. B 13, 2424 (1996).Google Scholar
  49. 49.
    Z. S. Piao, M. Tani, and K. Sakai, Jpn. J. Appl. Phys., Part 1 39, 96 (2000).Google Scholar
  50. 50.
    E. Castro-Camus, J. Lloyd-Hughes, and M. B. Johnston, Phys. Rev. B 71, 195301 (2005).Google Scholar
  51. 51.
    W. Shi, J. Xu, and X.-C. Zhang, Opt. Lett. 1, 308 (2003).Google Scholar
  52. 52.
    A. Dreyhaupt, F. Peter, S. Winnerl, S. Nitsche, M. Wagner, H. Schneider, M. Helm, and K. Köhler, Technisches Messen 75, 3 (2008).Google Scholar
  53. 53.
    P. C. M. Planken, C. E. W. M. Rijmenam, and R. N. Schouten, Semiconduct. Sci. Technol. 20, 121 (2005).Google Scholar
  54. 54.
    G. Zhao, R. N. Schouten, N. van der Valk, W. T. Wenckebach, and P. C. M. Planken, Rev. Sci. Instr. 73, 1715 (2002).Google Scholar
  55. 55.
    S. R. Andrews, A. Armitage, P. G. Huggard, and A. Hussain, Phys. Med. and Biol. 47, 3705 (2002).Google Scholar
  56. 56.
    D. Krökel, D. Grischkowsky, and M. B. Ketchen, Appl. Phys. Lett. 54, 1046 (1989).Google Scholar
  57. 57.
    E. Sato and T. Shibatas, Appl. Phys. Lett. 55, 2748 (1989).Google Scholar
  58. 58.
    S. E. Ralph and D. Grischkowsky, Appl. Phys. Lett. 59, 1972 (1991).Google Scholar
  59. 59.
    J. H. Kim, A. Polley, and S. E. Ralph, Opt. Lett. 30, 2490 (2005).Google Scholar
  60. 60.
    D. S. Kim and D. S. Citrin, J. Appl. Phys. 101, 053105 (2007).Google Scholar
  61. 61.
    J. Darrow, X.-C. Zhang, D. Auston and J. Morse, IEEE J. of Quantum Electron. 28, 1607 (1992).Google Scholar
  62. 62.
    G. Rodrigeuez and A. J. Taylor, Opt. Lett. 21, 2533(1994).Google Scholar
  63. 63.
    K. J. Siebert, A. Lisauskas, T. Löffler, and H. G. Roskos, J. Appl. Phys. 43, 1038 (2004).Google Scholar
  64. 64.
    D. S. Kim and D. S. Citrin, Appl. Phys. Lett. 88, 161117 (2006).Google Scholar
  65. 65.
    P. K. Benicewicz and A. J. Taylor, Opt. Lett. 18, 1332 (1993).Google Scholar
  66. 66.
    J. Z. Xu and X.-C. Zhang, Opt. Lett. 27, 1067 (2002).Google Scholar
  67. 67.
    K. Huska, G. Klatt, J. Hetterich, U. Geyer, T. Dekorsy, G. Bastian, and U. Lemmer, Electron. Lett. 45, 851 (2009).Google Scholar
  68. 68.
    G. P. Acuna, F. F. Buersgens, C. Lang, M. Handloser, A. Guggenmos, and R. Kersting, Electron. Lett. 44, 229 (2008).Google Scholar
  69. 69.
    M. Awad, M. Nagel, and H. Kurz, Appl. Phys. Lett. 91, 181124 (2007).Google Scholar
  70. 70.
    G. Matthäus, S. Nolte, R. Hohmuth, M. Voitsch, W. Richter, B. Pradarutti, S. Riehemann, G. Notni, A. Tünnermann, Appl. Phys. Lett. 93, 091110 (2008).Google Scholar
  71. 71.
    G. Matthäus, S. Nolte, R. Hohmuth, M. Voitsch, W. Richter, B. Pradarutti, S. Riehemann, G. Notni, and A. Tünnermann, Appl. Phys. B 96, 233 (2009).Google Scholar
  72. 72.
    D. G. Hall, Opt. Lett. 21, 9 (1996).Google Scholar
  73. 73.
    K.S. Youngworth and T.G. Brown, Opt. Express 7, 77 (2000).Google Scholar
  74. 74.
    S. Winnerl, B. Zimmermann, F. Peter, H. Schneider, and M. Helm, Opt. Express 17, 1571 (2009).Google Scholar
  75. 75.
    T.-I. Jeon, J. Zhang, and D. Grischkowsky, Appl. Phys. Lett. 86, 161904 (2005).Google Scholar
  76. 76.
    J. A. Deibel, K. Wang, M. D. Escarra, and D. M. Mittleman, Opt. Express 14, 279 (2006).Google Scholar
  77. 77.
    G. Chang, C. J. Divin, C.-H. Liu, S. L. Williamson, A. Galvanauskas, and T. B. Norris, Opt. Lett. 32, 433 (2007).Google Scholar
  78. 78.
    E. Castro-Camus, J. Lloyd-Hyghes, M. B. Johnston, M. D. Fraser, H. H. Tan, and C. Jagdish, Appl. Phys. Lett. 86, 254102 (2005).Google Scholar
  79. 79.
    M. Ibanescu, Y. Fink, S. Fan, E. L. Thomas, and J. D. Joannopoulos, Science 287, 415 (2000).Google Scholar
  80. 80.
    K. Wang and D. M. Mittleman, Nature 432, 376 (2004).Google Scholar
  81. 81.
    H. P. Urbach and S. F. Pereira, Phys. Rev. Lett. 100, 123904 (2008).Google Scholar
  82. 82.
    S. Quabis, R. Dorn, M. Eberler, O. Glöckl, and G. Leuchs, Opt. Comm. 179, 1 (2000).Google Scholar
  83. 83.
    R. Dorn, S. Quabis, and G. Leuchs, Phys. Rev. Lett. 91, 233901 (2003).Google Scholar
  84. 84.
    T.-A. Liu, M. Tani, and C.-L. Pan, J. Appl. Phys. 93, 2996 (2003).Google Scholar
  85. 85.
    A. C. Warren, J. M. Woodall, J. L. Freeouf, D. Grischkowsky, D. T. McInturff, M. R. Melloch, and N. Otsuka, Appl. Phys. Lett. 57, 1331 (1990).Google Scholar
  86. 86.
    D. C. Look, D. C. Walters, M. O. Manasreh, J. R. Sizelove, C. E. Stutz, and K. R. Evans, Phys. Rev. B 42, 3578 (1990).Google Scholar
  87. 87.
    R.-H. Chou, T.-A. Liu, and C.-L. Pan, J. Appl. Phys. 104, 053121 (2008).Google Scholar
  88. 88.
    B. Salem, D. Morris, Y. Salissou, V. Aimez, S. Charlebois, M. Chicoine, and F. Schiettekatte, J. Vac. Sci. Technol. A 24, 774 (2006).Google Scholar
  89. 89.
    B. Salem, D. Morris, V. Aimez, J. Beerens, J. Beauvais, and D. Houde, J. Phys. Condens. Matter 17, 7327 (2005).Google Scholar
  90. 90.
    B. Salem, D. Morris, V. Aimez, J. Beauvais, and D. Houde, Semicond. Sci. Technol. 21, 283 (2006).Google Scholar
  91. 91.
    J. Lloyd-Hughes, E. Castro-Camus, M. D. Fraser, C. Jagadish, and M. B. Johnston, Phys. Rev. B 70, 235330 (2004).Google Scholar
  92. 92.
    S. Winnerl, F. Peter, A. Dreyhaupt, B. Zimmermann, M. Wagner, H. Schneider, M. Helm, and K. Köhler, IEEE J. Sel. Top. Quantum Electron. 14, 449 (2008).Google Scholar
  93. 93.
    T.-A. Liu, M. Tani, M. Nakajima, M. Hangyo, and C.-L. Pan, Appl. Phys. Lett. 83, 1322 (2003).Google Scholar
  94. 94.
    E. Castro-Camus, L. Fu, J. Lloyd-Hughes, H. H. Tan, C. Jagadish, M. B. Johnston, J. Appl. Phys. 104, 053113 (2008).Google Scholar
  95. 95.
    F. Peter, S. Winnerl, S. Nitsche, A. Dreyhaupt, H. Schneider, and M. Helm, Appl. Phys. Lett. 91, 081109 (2007).Google Scholar
  96. 96.
    E. R. Brown, K. A. McIntosh, K. B. Nichols, and C. L. Dennis, Appl. Phys. Lett. 66, 285 (1995).Google Scholar
  97. 97.
    S. Preu, G. H. Döhler, S. Malzer, L. J. Wang, and A. C. Gossard, J. Appl. Phys. 109, 061301 (2011)Google Scholar
  98. 98.
    A. Weling, B. B. Hu, N. M. Froberg, and D. H. Auston, Appl. Phys. Lett. 64, 137 (1994).Google Scholar
  99. 99.
    A. Weling and D. H. Auston, J. Soc. Am. B 13, 2783 (1996).Google Scholar
  100. 100.
    J. Krause, M. Wagner, S. Winnerl, M. Helm, and D. Stehr, Opt. Express 19, 19114 (2011).Google Scholar
  101. 101.
    J. R. Danielson, A. D. Jemeson, J. L. Tomaino, H. Hui, J. D. Wentzel, Y.-S. Lee, and K. L. Vodopyanov, J. Appl. Phys. 104, 033111 (2008).Google Scholar
  102. 102.
    B. Sartorius, M. Schlak, D. Stanze, H. Roehle, H. Künzel, D. Schmidt, H.-G. Bach, R. Kunkel, and M. Schell, Opt. Express 17, 15001 (2009).Google Scholar
  103. 103.
    K. Köhler, J. Wagner, P. Ganser, D. Serries, T. Geppert, M. Maier, and L. Kirste, J. Phys.: Condens. Matter 16, S2995 (2004).Google Scholar
  104. 104.
    G. Matthäus, T. Schreiber, J. Limpert, S. Nolte, G. Torosyan, R. Beigang, S. Riehemann, G. Notni, and A. Tünnermann, Opt. Commun. 261, 114 (2006).Google Scholar
  105. 105.
    H. Dember, Z. Phys. 32, 554 (1931).Google Scholar
  106. 106.
    T. Dekorsy, T. Pfeifer, W. Kütt, and H. Kurz, Phys. Rev. B 47, 3842 (1993).Google Scholar
  107. 107.
    T. Dekorsy, H. Auer, H. J. Bakker, H. G. Roskos, and H. Kurz, Phys. Rev. B 53, 4005 (1996).Google Scholar
  108. 108.
    P. Gu, M. Tani, S. Kono, K. Sakai, and X.-C. Zhang, J. Appl. Phys. 91, 5533 (2002).Google Scholar
  109. 109.
    N. Sarukura, H. Ohtake, S. Izumida, and Z. Liu, J. Appl. Phys. 84, 654 (1998).Google Scholar
  110. 110.
    R. McLaughlin, A. Corchia, M. B. Johnston, Q. Chen, C. M. Ciesla, D. D. Arnone, G. A. C. Jones, E. H. Linfield, A. G. Davis, and M. Pepper, Appl. Phys. Lett. 76, 2038 (2000).Google Scholar
  111. 111.
    M. Migita and M. Hangyo, Appl. Phys. Lett. 79, 3438 (2001).Google Scholar
  112. 112.
    M. B. Johnston, D. M. Whittaker, D. Dowd, A. G. Davis, E. H. Linfield, and D. A. Richie, Opt. Lett. 27, 1935 (2002).Google Scholar
  113. 113.
    M. Zedler, C. Janke, P. Haring Bolivar, H. Kurz, and H. Künzel, Appl. Phys. Lett. 83, 4196 (2003).Google Scholar
  114. 114.
    M. B. Johnston, D. M. Whittaker, A. Corchia, A. G. Davies, and E. H. Linfield, Phys. Rev. B 65, 165301 (2002).Google Scholar
  115. 115.
    G. Klatt, F. Hilser, W. Qiao, M. Beck, R. Gebs, A. Bartels, K. Huska, U. Lemmer, G. Bastian, M. Johnston, M. Fischer, J. Faist, and T. Dekorsy, Opt. Express 18, 4939 (2010).Google Scholar
  116. 116.
    G. Klatt, D. Stephan, M. Beck, J. Demsar, and T. Dekorsy, Electron. Lett. 46, S24 (2010).Google Scholar
  117. 117.
    G. Klatt, B. Surrer, D. Stephan, O. Schubert, M. Fischer, J. Faist, A. Leitenstorfer, R. Huber, and T. Dekorsy, Appl. Phys. Lett. 98, 021114 (2011).Google Scholar
  118. 118.
    S. Winnerl, A. Dreyhaupt, F. Peter, D. Stehr, M. Helm and T. Dekorsy, Springer Proc. in Physics 110, 73 (2006).Google Scholar
  119. 119.
    T. Hattori, K. Egawa, S. Ookuma, and T. Ititani, Jap. J. of Appl. Phys. 45, L422 (2006)Google Scholar
  120. 120.
    A. E. Iverson, G. M. Wysin, D. L. Smith, and A. Redondo, Appl. Phys. Lett. 52, 2148 (1988).Google Scholar
  121. 121.
    This is the field inside the ZnTe crystal, it corresponds to a field of 35 kV/cm in air. In this paper all values for THz fields are the values in the sensing crystal.Google Scholar
  122. 122.
    J. Hebling, A. G. Stepanov, G. Almasi, B. Bartal and J. Kuhl, Appl. Phys. B: Lasers Opt. 78, 593 (2004).Google Scholar
  123. 123.
    R. R. Jones, D. You, and P. H. Bucksbaum, Phys. Rev. Lett. 70, 1236 (1993).Google Scholar
  124. 124.
    S. D. Ganichev, J. Diener, and W. Prettl, Appl. Phys. Lett. 64, 1977 (1994).Google Scholar
  125. 125.
    M. Wagner, H. Schneider, D. Stehr, S. Winnerl, A. M. Andrews, S. Schartner, G. Strasser, and M. Helm, Phys. Rev. Lett. 105, 167401 (2010).Google Scholar
  126. 126.
    J. Xu and X.-C. Zhang, Opt. Lett. 29, 2082 (2004).Google Scholar
  127. 127.
    F. Ellrich, D. Molter, T. Weinland, M. Theuer, J. Jonuscheit, and R. Beigang, in IEEE Proceedings of the 33rd International Conference on Infrared, Millimeter, and TerahertzWaves (IEEE, 2008).Google Scholar
  128. 128.
    D. Molter, F. Ellrich, T. Weinland, S. George, M. Goiran, F. Keilmann, R. Beigang, and J. Léotin, Opt. Express 18, 26163 (2010).Google Scholar
  129. 129.
    P. A. Elzinga, F. E. Lytle, Y. Jian, G. B. King, and N. M. Laurendeau, Appl. Opt. 26, 4303 (1987).Google Scholar
  130. 130.
    A. Bartels, A. Thoma, C. Janke, T. Dekorsy, A. Dreyhaupt, S. Winnerl, and M. Helm, Opt. Express 14, 340 (2005).Google Scholar
  131. 131.
    A. Bartels, R. Cerna, C. Kistner, A. Thoma, F. Hudert, C. Janke, and T. Dekorsy, Rev. Sci. Instr. 78, 035107 (2007).Google Scholar
  132. 132.
    G. Klatt, R. Gebs, H. Schäfer, M. Nagel, C. Janke, A. Bartels, and T. Dekorsy, IEEE J. Sel. Top. In Quantum Electron. 17, 159 (2011).Google Scholar
  133. 133.
    F. Tauser, C. Rausch, J. H. Posthumus, and F. Lison, Proc. SPIE 6881, 68810O (2008).Google Scholar
  134. 134.
    D. Stehr, C. M. Morris, C. Schmidt, and M. S. Sherwin, Opt. Lett. 35, 3799 (2010).Google Scholar
  135. 135.
    T. Hochrein, R. Wilk, M. Mei, R. Holzwarth, N. Krumbholz, and M. Koch, Opt. Express 18, 1613 (2010).Google Scholar
  136. 136.
    R. Wilk, T. Hochrein, M. Koch, M. Mei, and R. Holzwarth, J. Infrared Milli Terahz Waves 32, 596 (2011).Google Scholar
  137. 137.
    K. Schröck, F. Schröder, M. Heyden, R. A. Fischer and M. Havenith, Phys. Chem. Chem. Phys. 10, 4732 (2008).Google Scholar
  138. 138.
    P. Kužel, F. Kadlec, J. Petzelt, J. Schubert and G. Panaitov, Appl. Phys. Lett. 91, 232911 (2007).Google Scholar
  139. 139.
    C. Kadlec, F. Kadlec, H. Nemec, P. Kužel, J. Schubert, G. Panaitov, J. Phys.: Condens. Matter 21, 115902 (2009).Google Scholar
  140. 140.
    P. U. Jepsen, D. G. Cooke, and M. Koch, Laser Photonics Rev. 5, 124 (2011).Google Scholar
  141. 141.
    R. Merz, F. Keilmann, R. J. Haug, and K. Ploog, Phys. Rev. Lett. 70, 651 (1993).Google Scholar
  142. 142.
    F. Keilmann, Infrared Phys. and Technol. 36, 217 (1994).Google Scholar
  143. 143.
    S. Hunsche and M. Koch, Opt. Commun. 150, 22 (1998).Google Scholar
  144. 144.
    U. Schade and K. Holldack, Appl. Phys. Lett. 84, 1422 (2004).Google Scholar
  145. 145.
    M. Berta, P. Kužel and F. Kadlec, J. Phys. D: Appl. Phys. 42, 155501 (2009).Google Scholar
  146. 146.
    F. Keilmann and R. Hillenbrand, Philos. Trans. R. Soc. London, Ser. A 362, 787 (2004).Google Scholar
  147. 147.
    B. Knoll, F. Keilmann, A. Kramer, and R. Guckenberger, Appl. Phys. Lett. 70, 2667 (1997).Google Scholar
  148. 148.
    H. T. Chen, R. Kersting, and G. C. Cho, Appl. Phys. Lett. 83, 3009 (2003).Google Scholar
  149. 149.
    F. F. Buersgens, H. T. Chen, and R. Kersting, Appl. Phys. Lett. 88, 112115 (2006).Google Scholar
  150. 150.
    H.-G. von Ribbeck, M. Brehm, D. W. van der Weide, S. Winnerl, O. Drachenko, M. Helm, and F. Keilmann, Opt. Express 16, 3430 (2008).Google Scholar
  151. 151.
    A. J. Huber, D. Kazantsev, F. Keilmann, J. Wittborn, and R. Hillenbrand, Adv. Mater. 19, 2209 (2007).Google Scholar
  152. 152.
    A. J. Huber, F. Keilmann, J. Wittborn, J. Aizpurua, and R. Hillenbrand, Nano Lett. 8, 3766 (2008).Google Scholar
  153. 153.
    R. Jacob, S. Winnerl, H. Schneider, M. Helm, M. T. Wenzel, H.-G. Von Ribbeck, L. M. Eng, and S. C. Kehr, Opt. Express 18, 26206 (2010).Google Scholar
  154. 154.
    N. C. J. van der Valk and P. C. M. Planken, Appl. Phys. Lett. 81, 1558 (2002).Google Scholar
  155. 155.
    J. R. Knab, A. J. L. Adam, R. Chakkittakandy, and P. C. M. Planken, Appl. Phys. Lett. 97, 031115 (2010).Google Scholar
  156. 156.
    A. Bitzer, H. Merbold. A. Thoman, T. Feurer, H. Helm, and M. Walther, Opt. Express 17, 3826 (2009).Google Scholar
  157. 157.
    R. Köhler, A. Tredicucci, F. Beltram, H. E. Beere, E. H. Linfield, A. G. Davies, D. A. Ritchie, R. C. Iotto, and F. Rossi, Nature 417, 156 (2002).Google Scholar
  158. 158.
    J. Kroll, J. Darmo, S. S. Dhillon, X. Marcadet, M. Calligaro, C. Sirtori, and K. Unterrainer, Nature 449, 698 (2007).Google Scholar
  159. 159.
    N. Jukam, S. Dhillon, Z.-Y. Zhao, G. Duerr, J. Armijo, N. Sirmons, S. Hameau, S. Barbieri, P. Filloux, C. Sirtori, X. Marcadet, and J. Tignon, IEEE J. Sel. Top. Quantum Electron. 14, 436 (2008).Google Scholar
  160. 160.
    N. Jukam, S. S. Dhillon, D. Oustinov, Z.-Y. Zhao, S. Hameau, J. Tignon, S. Barbieri, A. Vasanelli, P. Filloux, C. Sirtori, and X. Marcadet, Appl. Phys. Lett. 93, 101115 (2008).Google Scholar
  161. 161.
    N. Jukam, S. S. Dhillon, D. Oustinov, J. Madeo, J. Tignon, R. Colombelli, P. Dean, M. Salih, S. P. Khanna, E. H. Linfield, and A. G. Davies, Appl. Phys. Lett. 94, 251108 (2009).Google Scholar
  162. 162.
    N. Jukam, S. S. Dhillon, D. Oustinov, J. Madeo, C. Manquest, S. Barbieri, C. Sirtori, S. P. Khanna, E. H. Linfield, A. G. Davies, and J. Tignon, Nature Photon. 3, 715 (2009).Google Scholar
  163. 163.
    D. Oustinov, N. Jukam, R. Rungsawang, J. Madéo, S. Barbieri, P. Filloux, C. Sirtori, X. Marcadet, J. Tignon, and S. Dhillon, Nature Comm. 1, 69 (2010).Google Scholar
  164. 164.
    H. Luo, S. R. Laframboise, Z. R. Wasilewsik, G. C. Aers, H. C. Liu, and J. C. Cao, Appl. Phys. Lett. 90, 041112 (2007).Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Institute of Ion Beam Physics and Materials ResearchHelmholtz-Zentrum Dresden-RossendorfDresdenGermany

Personalised recommendations