Coupling and Propagation of Sommerfeld Waves at 100 and 300 GHz

  • Laurent Chusseau
  • Jean-Paul Guillet


The coupling between a linearly-polarized gaussian beam and a Sommerfeld wave propagating on a circular metallic wire is obtained owing to a differential phase element inserted in front of the metal wire. At millimeter-wavelengths we calculate a theoretical maximum coupling efficiency of 32% for this system in spite of the metal nature and radius in the range of a few hundreds of microns. A detailed experimental study of 100 and 300 GHz Sommerfeld waves propagating on stainless steel and tungsten wires is reported. The measured field at any distance from the wire compares well with theoretical predictions.


Far infrared Waveguides Surface plasmons 



The authors acknowledge the French National Research Agency for funding under grant TERASCOPE, #ANR-06-BLAN-0073. Authors are also highly grateful to Jacques Arnaud for fruitful discussions and careful reading of the manuscript.


  1. 1.
    M. Tonouchi, Nature Photonics 1 97 (2007).CrossRefGoogle Scholar
  2. 2.
    R. Mendis and D. Grischkowsky, Journal of Applied Physics 88, 4449 (2000).CrossRefGoogle Scholar
  3. 3.
    L.-J. Chen, H.-W. Chen, T.-F. Kao, J.-Y. Lu, and C.-K. Sun, Optics Letters 31, 308 (2006).CrossRefGoogle Scholar
  4. 4.
    C. Jördens, K. L. Chee, I. A. I. Al-Naib, I. Pupeza, S. Peik, G. Wenke, and M. Koch, J. Infrared Millim. Terahertz Waves 31, 214 (2010).Google Scholar
  5. 5.
    C.-H. Lai, Y.-C. Hsueh, H.-W. Chen, Y.-J. Huang, H.-C. Chang, and C.-K. Sun, Opt. Lett. 34, 3457 (2009).CrossRefGoogle Scholar
  6. 6.
    B. Bowden, J. A. Harrington, and O. Mitrofanov, Opt. Lett. 32, 2945 (2007).CrossRefGoogle Scholar
  7. 7.
    D. Chen and H. Chen, Opt. Express 18, 3762 (2010).CrossRefGoogle Scholar
  8. 8.
    D. Grischkowsky, IEEE Journal of Selected Topics In Quantum Electronics 6, 1122 (2000).CrossRefGoogle Scholar
  9. 9.
    G. Gallot, S. P. Jamison, R. W. McGowan, and D. Grischkowsky, J. Opt. Soc. Am. B 17, 851 (2000).CrossRefGoogle Scholar
  10. 10.
    M. Mbonye, R. Mendis, and D. M. Mittleman, Applied Physics Letters 95, 233506 (2009).Google Scholar
  11. 11.
    M. Wächter, M. Nagel, and H. Kurz, Appl. Phys. Lett. 92, 161102 (2008).Google Scholar
  12. 12.
    S.-H. Kim, E. S. Lee, Y. B. Ji, and T.-I. Jeon, Opt. Express 18, 1289 (2010).CrossRefGoogle Scholar
  13. 13.
    H. Zhan, R. Mendis, and D. M. Mittleman, Optics Express 18, 9643 (2010).CrossRefGoogle Scholar
  14. 14.
    G. Goubau, J. Appl. Phys. 21, 1119 (1950).MathSciNetzbMATHCrossRefGoogle Scholar
  15. 15.
    K. Wang and D. Mittleman, Nature 432, 376 (2004).CrossRefGoogle Scholar
  16. 16.
    K. Wang and D. Mittleman, J. Opt. Soc. Am. B 22, 2001 (2005).CrossRefGoogle Scholar
  17. 17.
    T. Jeon, J. Zhang, and D. Grischkowsky, Appl. Phys. Lett. 86, 161904 (2005).CrossRefGoogle Scholar
  18. 18.
    M. Wächter, M. Nagel, and H. Kurz, Optics Express 13, 10815 (2005).CrossRefGoogle Scholar
  19. 19.
    K. Wang and D. Mittleman, Phys. Rev. Lett. 96, 157401 (2006).Google Scholar
  20. 20.
    T. Akalin, A. Treizebre, and B. Bocquet, IEEE Trans. Microwave Theo. Techn. 54, 2762 (2006).CrossRefGoogle Scholar
  21. 21.
    Y. B. Ji, E. S. Lee, J. S. Jang, and T.-I. Jeon, Opt. Express 16, 271 (2008).CrossRefGoogle Scholar
  22. 22.
    X.-Y. He, J. Opt. Soc. Am. B 26, A23 (2009).CrossRefGoogle Scholar
  23. 23.
    M. Awad, M. Nagel, and H. Kurz, Appl. Phys. Lett. 94, 051107 (2009).CrossRefGoogle Scholar
  24. 24.
    V. Astley, J. Scheiman, R. Mendis, and D. M. Mittleman, Opt. Lett. 35, 553 (2010).CrossRefGoogle Scholar
  25. 25.
    J.-P. Guillet, L. Chusseau, R. Adam, T. Grosjean, A. Penarier, F. Baida, and D. Charraut, Microwave and Optical Technology Letters 53, 580 (2011).CrossRefGoogle Scholar
  26. 26.
    A. Sommerfeld, Electrodynamics (Academic Press, New York, 1952).zbMATHGoogle Scholar
  27. 27.
    Q. Cao and J. Jahns, Opt. Express 13, 511 (2005).CrossRefGoogle Scholar
  28. 28.
    J. Yang, Q. Cao, and C. Zhou, Optics Express 17, 20806 (2009).CrossRefGoogle Scholar
  29. 29.
    Mathematica 8, Wolfram Research Inc. (2011),
  30. 30.
    M. A. Ordal, R. J. Bell, R. W. Alexander, L. L. Long, and M. R. Querry, Applied Optics 24, 4493 (1985).CrossRefGoogle Scholar
  31. 31.
    M. A. Ordal, R. J. Bell, R. W. Alexander, L. A. Newquist, and M. R. Querry, Applied Optics 27, 1203 (1988).CrossRefGoogle Scholar
  32. 32.
    F. Sobel, F. L. Wentworth, and J. C. Wiltse, IRE Trans. Microwave Theory Tech. 9, 512 (1961).CrossRefGoogle Scholar
  33. 33.
    A. Agrawal and A. Nahata, Opt. Express 15, 9022 (2007).CrossRefGoogle Scholar
  34. 34.
    J. Deibel, K. Wang, M. Escarra, and D. Mittleman, Opt. Express 14, 279 (2006).CrossRefGoogle Scholar
  35. 35.
    M. Walther, M. Freeman, and F. Hegmann, Appl. Phys. Lett. 87, 261107 (2005).Google Scholar
  36. 36.
    R. Adam, L. Chusseau, T. Grosjean, A. Penarier, J.-P. Guillet, and D. Charraut, Journal of Applied Physics 106, 073107 (2009).CrossRefGoogle Scholar
  37. 37.
    J. A. Arnaud, Beam and Fiber Optics (Academic Press, 1976).Google Scholar
  38. 38.
    J. A. Deibel, N. Berndsen, K. Wang, D. M. Mittleman, N. C. J. van der Valk, and P. C. M. Planken, Opt. Express 14, 8772 (2006).CrossRefGoogle Scholar
  39. 39.
    M. Walther, G. S. Chambers, Z. G. Liu, M. R. Freeman, and F. A. Hegmann, J. Opt. Soc. Am. B 22, 2357 (2005).CrossRefGoogle Scholar
  40. 40.
    C. A. Balanis, Antenna Theory - Analysis and Design (John Wiley & Sons Inc., 1982), 2nd ed.Google Scholar
  41. 41.
    H. Liang, S. Ruan, and M. Zhang, Opt. Express 16, 18241 (2008).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Institut d’Électronique du Sud, UMR 5214 CNRSUniversité Montpellier 2MontpellierFrance

Personalised recommendations