Dual-Frequency Behavior of Stacked High Tc Superconducting Microstrip Patches

  • Siham Benkouda
  • Mounir Amir
  • Tarek Fortaki
  • Abdelmadjid Benghalia
Article

Abstract

The dual-frequency behavior of stacked high Tc superconducting rectangular microstrip patches fabricated on a two-layered substrate is investigated using a full-wave spectral analysis in conjunction with the complex resistive boundary condition. Using a matrix representation of each layer, the dyadic Green’s functions of the problem are efficiently determined in the vector Fourier transform domain. The stationary phase method is used for computing the radiation electric field of the antenna. The proposed approach is validated by comparison of the computed results with previously published data. Variations of the lower and upper resonant frequencies, bandwidth and quality factor with the operating temperature are given. Results showing the effects of the bottom patch thickness as well as the top patch thickness on the dual-frequency behavior of the stacked configuration are also presented and discussed. Finally, for a better comprehension of the dual-frequency operation, a comparison between the characteristics of the lower and upper resonances is given.

Keywords

Superconducting microstrip patches Stacked patches Dual-frequency operation 

References

  1. 1.
    S. K. Pavuluri, C. Wang, A. J. Sangster, IEEE Trans. Antennas Propagat. 58, 3616 (2010).CrossRefGoogle Scholar
  2. 2.
    O. Q. Teruel, Z. Sipus, E. R. Iglesias, IEEE Trans. Antennas Propagat. 59, 1031 (2011).CrossRefGoogle Scholar
  3. 3.
    T. Fortaki, L. Djouane, F. Chebbara, A. Benghalia, International Journal of Electronics 95, 989 (2008).CrossRefGoogle Scholar
  4. 4.
    D. Khedrouche, F. Bouttout, T. Fortaki, A. Benghalia, Engineering Analysis with Boundary Elements 33, 930 (2009).MathSciNetCrossRefGoogle Scholar
  5. 5.
    S. Benkouda, T. Fortaki, in Progress In Electromagnetics Research Symposium, Marrakesh, Morocco, 239 (2011).Google Scholar
  6. 6.
    F. Zhao, T. T. Liu, Z. P. Qian, Progress In Electromagnetics Research C 20, 95 (2011).CrossRefGoogle Scholar
  7. 7.
    S. Shekhawat, P. Sekra, D. Bhatnagar, V. K. Saxena, J. S. Saini, IEEE Antennas Wireless Propagat. Lett. 9, 910 (2010).CrossRefGoogle Scholar
  8. 8.
    M. A. Richard, K. B. Bhasin, P. C. Claspy, IEEE Trans. Antennas Propagat. 41, 967 (1993).CrossRefGoogle Scholar
  9. 9.
    S. Liu, B. Guan, Electron. Lett. 41, (2005).Google Scholar
  10. 10.
    O. Barkat, A. Benghalia, J Infrared Milli Terahz Waves 30, 1053 (2009).CrossRefGoogle Scholar
  11. 11.
    F. Chebbara, S. Benkouda, T. Fortaki, J Infrared Milli Terahz Waves 31, 821 (2010).CrossRefGoogle Scholar
  12. 12.
    F. Benmeddour, C. Dumond, F. Benabdelaziz, F. Bouttout, Progress In Electromagnetics Research C 18, 169 (2011).Google Scholar
  13. 13.
    S. E. Valavan, A. B. Yang, A. Yarovoy, L. P. Ligthart, in 5th European Radar Conference, Amsterdam, The Netherlands, 200 (2008).Google Scholar
  14. 14.
    A. S. Elkorany, A. A. Sharshar, S. M. Elhalafawy, in 3 rd European Conference on Antennas and Propagation, 1464 (2009).Google Scholar
  15. 15.
    J. Gao, K. Li, H. Harada, in IEEE Antennas and Propagation Society International Symposium, 1 (2010).Google Scholar
  16. 16.
    J. Anguera, C. Puente, C. Borja, N. Delbene, J. Soler, IEEE Antennas Wireless Propagat. Lett. 2, 36 (2003).CrossRefGoogle Scholar
  17. 17.
    M. T. Islam, N. Misran, M. N. Shakib, B. Yatim, in International Symposium on Parallel and Distributed Processing with Applications, 547 (2008).Google Scholar
  18. 18.
    T. Fortaki, L. Djouane, F. Chebara, A. Benghalia, IEEE Antennas Wireless Propagat. Lett. 7, 310 (2008).CrossRefGoogle Scholar
  19. 19.
    L. Han, W. Zhang, X. Chen, G. Han, R. Ma, IEEE Trans. Antennas Propagat. 58, 1387 (2010).CrossRefGoogle Scholar
  20. 20.
    W. C. Chew, T. M. Habashy, IEEE Trans. Antennas Propagat. Ap-34, 871 (1986).Google Scholar
  21. 21.
    S. Benkouda, T. Fortaki, in Progress In Electromagnetics Research Symposium, Marrakesh, Morocco, 578 (2011).Google Scholar
  22. 22.
    T. Fortaki, D. Khedrouche, F. Bouttout, A. Benghalia, Communications in Numerical Methods in Engineering 20, 489 (2004).MATHCrossRefGoogle Scholar
  23. 23.
    D. M. Pozar, Microwave Engineering. (Addison-Wesley, Reading, Massachusetts, 1990), pp. 663–670.Google Scholar
  24. 24.
    R. E. Collin, Antennas and Radiowave Propagation. (McGraw-Hill, New York, 1985).Google Scholar
  25. 25.
    V. Losada, R. R. Boix, M. Horno, IEEE Trans. Microwave Theory Tech. 47, 488 (1999).CrossRefGoogle Scholar
  26. 26.
    K. F. Lee, J. S. Dahele, in Handbook of Microstrip Antennas, ed. by J. R. James, P. S. Hall (Peter Peregrinus, London, 1989), p. 111.CrossRefGoogle Scholar
  27. 27.
    K. L. Chung, A. S. Mohan, IEEE Trans. Antennas Propagat. 52, 1365 (2004).CrossRefGoogle Scholar
  28. 28.
    T. Fortaki, A. Benghalia, Microwave Opt. Technol. Lett. 41, 496 (2004).CrossRefGoogle Scholar
  29. 29.
    Z. Fan, K. F. Lee, IEEE Trans. Antennas Propagat. 39, 867 (1991).CrossRefGoogle Scholar
  30. 30.
    T. Fortaki, D. Khedrouche, F. Bouttout, A. Benghalia, Communications in Numerical Methods in Engineering 21, 219 (2005).MATHCrossRefGoogle Scholar
  31. 31.
    T. Fortaki, S. Benkouda, F. Chebbara, D. Arar, in International Conference on Electronics Systems, Batna, Algeria, 183 (2009).Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Siham Benkouda
    • 1
  • Mounir Amir
    • 1
  • Tarek Fortaki
    • 1
  • Abdelmadjid Benghalia
    • 2
  1. 1.Electronics DepartmentUniversity of BatnaBatnaAlgeria
  2. 2.Electronics DepartmentUniversity of ConstantineConstantineAlgeria

Personalised recommendations