High Temperature Millimeter Wave Radiometric and Interferometric Measurements of Slag-Refractory Interaction for Application to Coal Gasifiers

  • John S. McCloy
  • Jarrod V. Crum
  • S. K. Sundaram
  • Ryan Slaugh
  • Paul P. Woskov


Millimeter wave (MMW) radiometry can be used for simultaneous measurement of emissivity and temperature of materials under extreme environments such as in slagging coal gasifiers, where sensors have been identified as a key enabling technology need for process optimization. We present a dual-channel MMW heterodyne radiometer with active interferometric capability that allows simultaneous measurements of sample temperature, emissivity, and flow dynamics. Interferometric capability at 137 GHz is supplied via a probe signal originating from a local oscillator allowing monitoring of sample dynamics such as volume expansion and thickness change. This capability has been used to monitor characteristic behavior between refractories and slag such as slag infiltration, slag melting, viscous flow, foaming, and crucible corrosion by the molten slag. These results show the promise of the MMW system for extracting process parameters from operating slagging coal gasifiers, providing valuable information for process efficiency, control, and increased productivity.


Emissivity Coal gasification Viscosity Millimeter-wave Radiometry High temperature 



The authors acknowledge partial support from Energy Conversion Initiative (ECI) at Pacific Northwest National Laboratory (PNNL). PNNL is a multi-program national laboratory operated by Battelle Memorial Institute for the United States Department of Energy under DE-AC06-76RLO 1830. The authors thank Maura Zimmerschied and Josef Matyas for reviews of the preliminary manuscript.


  1. 1.
    National Research Council, Committee on R&D Opportunities for Advanced Fossil-Fueled Energy Complexes, Vision 21, Fossil Fuel Options for the Future, Washington, D. C., (2000).Google Scholar
  2. 2.
    S. K. Sundaram, K. I. Johnson, J. Matyas, R. E. Williford, S. P. Pilli and V. N. Korolev, An Integrated Approach to Coal Gasifier Testing, Modeling, and Process Optimization, Energy & Fuels 23 (10) (2009) 4748–4754.CrossRefGoogle Scholar
  3. 3.
    S. Maley, R. R. Romanosky and Z.-Y. Chen, Sensors and Controls Workshop Summary Report, DOE/NETL-2002/1162 (2001).Google Scholar
  4. 4.
    P. P. Woskov, J. S. Machuzak, P. Thomas, S. K. Sundaram and J. W. E. Daniel, Millimeter-Wave Monitoring of Nuclear Waste Glass Melts - An Overview. Environmental Issues and Waste Management Technologies VII, Ceramic Transactions, Volume 132 (2002).Google Scholar
  5. 5.
    P. P. Woskov, S. K. Sundaram, W. E. Daniel and D. Miller, Molten salt dynamics in glass melts using millimeter-wave emissivity measurements, J. Non-Cryst. Sol. 341 (1–3) (2004) 21–25.CrossRefGoogle Scholar
  6. 6.
    N. Gopalsami and A. C. Raptis, Diagnostic applications of millimeter waves in coal conversion systems, Argonne National Laboratory, Argonne, IL, CONF-851238-2 (1985).Google Scholar
  7. 7.
    P. P. Woskov and S. K. Sundaram, Thermal return reflection method for resolving emissivity and temperature in radiometric measurements, J. Appl. Phys. 92 (10) (2002) 6302–6310.CrossRefGoogle Scholar
  8. 8.
    J. S. McCloy, S. K. Sundaram, J. Matyas and P. P. Woskov, Simultaneous measurement of temperature and emissivity of lunar regolith simulant using dual-channel millimeter-wave radiometry, Rev. Sci. Instr. 82 (5) (2011) 054703–054710.CrossRefGoogle Scholar
  9. 9.
    J. Chun, J. S. McCloy, J. V. Crum and S. K. Sundaram, Millimeter Wave Rheometry: Theory and Experiment, Rheol. Acta 50 (2011) 125–130.CrossRefGoogle Scholar
  10. 10.
    K. Kwong, A. Petty, J. Bennett, R. Krabbe and H. Thomas, Wear mechanisms of chromia refractories in slagging gasifiers, Int. J. Appl. Ceram. Technol. 4 (6) (2007) 503–513.CrossRefGoogle Scholar
  11. 11.
    C. Higman and M. van der Burgt, Gasification, Elsevier, Amsterdam (2008).Google Scholar
  12. 12.
    A. Kapilashrami, A. Lahiri, M. Görnerup and S. Seetharaman, The fluctuations in slag foam under dynamic conditions, Metall. Mater. Trans. B 37 (1) (2006) 145–148.CrossRefGoogle Scholar
  13. 13.
    J. Matyas, S. K. Sundaram, B. J. Hicks, A. B. Edmonson and B. M. Arrigoni, Slag-Refractory Interaction in Slagging Coal Gasifiers, Mater. Sci. For. 595–598 (2008) 397–405.Google Scholar
  14. 14.
    J. Matyas and P. Hrma, Sulfate fining chemistry in oxidized and reduced soda-lime-silica glasses, Pacific Northwest National Laboratory, Richland, WA, PNNL-15175 (2005).Google Scholar
  15. 15.
    D. S. Goldman, Melt foaming, foam stability and redox in nuclear waste vitrification, J. Non-Cryst. Solids 84 (1986) 292–298.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • John S. McCloy
    • 1
  • Jarrod V. Crum
    • 1
  • S. K. Sundaram
    • 2
  • Ryan Slaugh
    • 1
  • Paul P. Woskov
    • 3
  1. 1.Pacific Northwest National LaboratoryRichlandUSA
  2. 2.Kazuo Inamori School of EngineeringAlfred UniversityAlfredUSA
  3. 3.Plasma Science and Fusion CenterMassachusetts Institute of TechnologyCambridgeUSA

Personalised recommendations