Analysis of Dual Frequency Interaction in the Filament with the Purpose of Efficiency Control of THz Pulse Generation

  • Olga G. Kosareva
  • Nikolay A. Panov
  • Roman V. Volkov
  • Vera A. Andreeva
  • Aleksey V. Borodin
  • Mikhail N. Esaulkov
  • Yanping Chen
  • Claude Marceau
  • Vladimir A. Makarov
  • Alexander P. Shkurinov
  • Andrey B. Savel’ev
  • See Leang Chin
Article

Abstract

Cross-guiding of the 400 nm second harmonic of the Ti:Sapphire laser in the femtosecond filament produced by an 800 nm pump in argon leads to the efficient terahertz generation along the longitudinally extended high intensity region. Based on the vectorial model of the dual pulse co-propagation we found that terahertz yield due to four-wave mixing in the filament maximizes for the same temporal delay between 400 nm and 800 nm pulses as the 400 nm signal after the analyzer crossed to its initially linear polarization direction. This optimum delay goes up with increasing geometrical focusing distance and leads to the maximum terahertz yield if the initial 800 nm pump and the second harmonic polarization directions are parallel to each other.

Keywords

Terahertz (THz) generation Femtosecond filament Four-wave mixing (FWM) 

References

  1. 1.
    C.C. Cheng, E.M. Wright, J.V. Moloney, Phys. Rev. Lett. 87, 213001 (2001).CrossRefGoogle Scholar
  2. 2.
    P. Sprangle, J. Peñano, B. Hafizi, C. Kapetanakos, Phys. Rev. E 69, 066415 (2004).CrossRefGoogle Scholar
  3. 3.
    S. Tzortzakis, G. Mechain, G. Patalano, Y. B. Andre, B. Prade, M. Franco, A. Mysyrowicz, J. M. Munier, M. Gheudin, G. Beaudin, P. Encrenaz, Opt. Lett. 27, 1944 (2002).CrossRefGoogle Scholar
  4. 4.
    C. D’Amico, A. Houard, M. Franco, B. Prade, A. Mysyrowicz, A. Couairon, V. T. Tikhonchuk, Phys. Rev. Lett. 98, 235002 (2007).CrossRefGoogle Scholar
  5. 5.
    O.G. Kosareva, N.A. Panov, N. Akozbek, V.P. Kandidov, Q. Luo, S.A. Hosseini, W. Liu, J.-F. Gravel, G. Roy, S.L. Chin, Appl. Phys. B 82, 111 (2006).CrossRefGoogle Scholar
  6. 6.
    J.-F. Daigle, Y. Kamali, J. Bernhardt, W. Liu, C. Marceau, A. Azarm, S.L. Chin, Opt. Comm. 281, 3327 (2008).CrossRefGoogle Scholar
  7. 7.
    D.J. Cook, R.M. Hochstrasser, Opt. Lett. 25, 1210 (2000).CrossRefGoogle Scholar
  8. 8.
    T. Bartel, P. Gaal, K. Reimann, M. Woerner, T. Elsaesser, Opt. Lett. 30, 2805 (2005).CrossRefGoogle Scholar
  9. 9.
    J. Dai, X. Xie, X-C Zhang, Phys. Rev. Lett. 97, 103903 (2006).CrossRefGoogle Scholar
  10. 10.
    T. Fuji, T. Horio, and T. Suzuki, Opt. Lett. 32, 2481 (2007).CrossRefGoogle Scholar
  11. 11.
    F. Théberge, N. Aközbek, W. Liu, A. Becker, S. L. Chin, Phys. Rev. Lett. 97, 023904 (2006).CrossRefGoogle Scholar
  12. 12.
    T. Fuji, T. Suzuki, Opt. Lett. 32, 3330 (2007)CrossRefGoogle Scholar
  13. 13.
    F. Theberge, M. Chateauneuf, G. Roy, P. Mathieu, J. Dubois, Phys.Rev.A 81, 033821 (2010).Google Scholar
  14. 14.
    K.Y. Kim, J.H. Glownia, A.J. Taylor, G. Rodriguez, Opt. Express 15, 4577 (2007).CrossRefGoogle Scholar
  15. 15.
    G. Rodriguez, G.L. Dakovski, Opt. Express 18, 15130 (2010)CrossRefGoogle Scholar
  16. 16.
    I. Babushkin, W. Kuehn, C. Kohler, S. Skupin, L. Berge, K. Reimann, M.Woerner, J. Herrmann, T. Elsaesser, Phys. Rev. Lett. 105, 053903 (2010).CrossRefGoogle Scholar
  17. 17.
    A.V. Balakin, A.V. Borodin, I.A. Kotelnikov, and A.P. Shkurinov, J. Opt. Soc. Am. B 27, 16 (2010)MathSciNetCrossRefGoogle Scholar
  18. 18.
    C. D’Amico, A. Houard, S. Akturk, Y. Liu, J. Le Bloas, M. Franco, B. Prade, A. Couairon, V.T. Tikhonchuk, A. Mysyrowicz, New J Phys 10, 013015 (2008).CrossRefGoogle Scholar
  19. 19.
    A. Couairon, A. Mysyrowicz, Physics Reports 441, 47 (2007).CrossRefGoogle Scholar
  20. 20.
    O. Kosareva, J.-F. Daigle, N. Panov, T. Wang, S. Hosseini, S. Yuan, G. Roy, V. Makarov, S.L. Chin, Opt. Lett. 36, 1035 (2011)CrossRefGoogle Scholar
  21. 21.
    Y. Chen, T.J. Wang, C. Marceau, F. Théberge, M. Châteauneuf, J. Dubois, O.G. Kosareva, S.L. Chin, Appl. Phys. Lett. 95, 101101 (2009).CrossRefGoogle Scholar
  22. 22.
    C. Marceau, Y. Chen, F. Théberge, M. Châteauneuf, J. Dubois, S.L. Chin, Opt. Lett. 34, 1417 (2009).CrossRefGoogle Scholar
  23. 23.
    Y. Chen, C. Marceau, S. Génier, F. Théberge, M. Châteauneuf, J. Dubois, S.L. Chin, Opt. Comm. 282, 4283 (2009).CrossRefGoogle Scholar
  24. 24.
    H. Zhong, N. Karpowicz, and X.-C. Zhang, Appl. Phys. Lett. 88, 261103 (2006).CrossRefGoogle Scholar
  25. 25.
    O. Kosareva, N. Panov, V. Makarov, I. Perezhogin, C. Marceau, Y. Chen, S. Yuan, T. Wang, H. Zeng, A. Savel’ev, and S.L. Chin, Opt. Letters 35, 2904 (2010).Google Scholar
  26. 26.
    V.P. Kandidov, S.A. Shlenov, O.G. Kosareva, Quant. Electron. 39, 205 (2009)CrossRefGoogle Scholar
  27. 27.
    R.W. Hellwarth, D.M. Pennington, M.A. Henesian, Phys. Rev. A 41, 2766 (1990).CrossRefGoogle Scholar
  28. 28.
    M. Kolesik, J.V. Moloney, E.M. Wright, Phys. Rev. E 64, 046607 (2001).CrossRefGoogle Scholar
  29. 29.
    N.A. Panov, O.G. Kosareva, A.B. Savel’ev-Trofimov, D.S. Uryupina, I.A. Perezhogin, V.A. Makarov, Quant. Electron. 41, 160 (2011).Google Scholar
  30. 30.
    A.M. Perelomov, V.S. Popov, M.V. Terent’ev, Sov. Phys. JETP 23, 924 (1966)Google Scholar
  31. 31.
    Y.R. Shen, The Principles of Nonlinear Optics (John Wiley&Sons, New York, 1984).Google Scholar
  32. 32.
    T.J. Wang, S.A. Yuan, Y.P. Chen, J.F. Daigle, C. Marceau, F. Theberge, M. Chateauneuf, J. Dubois, S.L. Chin, Appl. Phys. Lett. 97, 111108 (2010).CrossRefGoogle Scholar
  33. 33.
    M.D. Thomson, V. Blank, and H.G. Roskos, Opt.Exp. 18, 23173 (2010).CrossRefGoogle Scholar
  34. 34.
    J.H. Marburger, Prog. Quantum Electron. 4, 35 (1975).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Olga G. Kosareva
    • 1
  • Nikolay A. Panov
    • 1
  • Roman V. Volkov
    • 1
  • Vera A. Andreeva
    • 1
  • Aleksey V. Borodin
    • 1
  • Mikhail N. Esaulkov
    • 1
  • Yanping Chen
    • 2
  • Claude Marceau
    • 2
  • Vladimir A. Makarov
    • 1
  • Alexander P. Shkurinov
    • 1
  • Andrey B. Savel’ev
    • 1
  • See Leang Chin
    • 2
  1. 1.International Laser Center & Faculty of PhysicsM.V. Lomonosov Moscow State UniversityMoscowRussia
  2. 2.Centre d’Optique, Photonique et Laser (COPL) and Département de physique, de génie physique et d’optique, Université LavalQuébecCanada

Personalised recommendations