Plasmon Excitation and Plasmonic Detection of Terahertz Radiation in the Grating-Gate Field-Effect-Transistor Structures

Article

Abstract

Physics of plasma oscillations and basic principles of plasmonic detection of terahertz radiation in the grating-gate transistor structures with two-dimensional electron channels are considered. It is shown that the grating-gate-transistor plasmonic detectors can be efficiently coupled to terahertz radiation. Plasmonic detection response considerably increases if the electron density in the grating-gate transistor structure is spatially modulated.

Keywords

Two-dimensional electron gas Plasmons Terahertz radiation Detection Field-effect transistor Gratings 

Notes

Acknowledgements

This work was performed under the umbrella of the GDR-I project “Semiconductor Sources and Detectors for Terahertz Frequencies” with the support from the Russian Foundation for Basic Research (Grant Nos. 11-02-92101 and 10-02-93120) and from the Russian Academy of Sciences Program “Fundamentals of Nanotechnology and Nanomaterials”. I am grateful to my colleagues Drs. M. S. Shur, W. Knap, V. I. Gavrilenko, S. J. Allen, G. R. Aizin, N. J. M. Horing, T. Otsuji, Y. M. Meziani, A. V. Muravjov, D. B. Veksler, N. Pala, D. Coquillat, F. Teppe, N. Dyakonova, D. V. Fateev, O. V. Polischuk, G. M. Tsymbalov, K. V. Marem’yanin, D. M. Ermolaev, N. A. Maleev, V. E. Zemlyakov, and S. Yu. Shapoval for their invaluable contribution to our collaborative research on THz plasmonic properties of the grating-gate transistor structures.

References

  1. 1.
    M. Dyakonov and M. Shur, IEEE Trans. Electron Devices 43, 380 (1996).CrossRefGoogle Scholar
  2. 2.
    M. S. Shur and J.-Q. Lu, IEEE Trans. Microwave Theory and Techniques 48, 750 (2000).CrossRefGoogle Scholar
  3. 3.
    W. Knap, J. Lusakowski, T. Parenty, S. Bollaert, A. Cappy, V. V. Popov, and M. S. Shur, Appl. Phys. Lett. 84, 2331 (2004).CrossRefGoogle Scholar
  4. 4.
    A. Satou, I. Khmyrova, V. Ryzhii, and M. S. Shur, Semicond. Sci. Technol. 18, 460 (2003).CrossRefGoogle Scholar
  5. 5.
    A. Satou, V. Ryzhii, I. Khmyrova, M. Ryzhii, and M. S. Shur, J. Appl. Phys. 95, 2084 (2004).CrossRefGoogle Scholar
  6. 6.
    F. Teppe, W. Knap, D. Veksler, M. S. Shur, A. P. Dmitriev, V. Yu. Kachorovskii, and S. Rumyantsev, Appl. Phys. Lett. 87, 052107 (2005).CrossRefGoogle Scholar
  7. 7.
    N. Pala, F. Teppe, D. Veksler, Y. Deng, M. S. Shur, and R. Gaska, Electron. Lett. 41, 447 (2005).CrossRefGoogle Scholar
  8. 8.
    A. El Fatimy, F. Teppe, N. Dyakonova, W. Knap, D. Seliuta, G. Valušis, A. Shchepetov, Y. Roelens, S. Bollaert, A. Cappy, and S. Rumyantsev, Appl. Phys. Lett. 89, 131926 (2006).CrossRefGoogle Scholar
  9. 9.
    V. I. Gavrilenko, E. V. Demidov, K. V. Marem’yanin, S. V. Morozov, W. Knap, and J. Lusakowski, Fiz. Tekh. Poluprovodn. (St. Petersburg) 41, 238 (2007) [Semiconductors 41, 232 (2007)].Google Scholar
  10. 10.
    W. J. Stillman and M. S. Shur, J. Nanoelectron. Optoelectron. 2, 209 (2007).CrossRefGoogle Scholar
  11. 11.
    A. V. Antonov, V. I. Gavrilenko, K. V. Marem’yanin, S. V. Morozov, F. Teppe, and W. Knap, Fiz. Tekh. Poluprovodn. (St. Petersburg) 43, 552 (2009) [Semiconductors 43, 528 (2009)].Google Scholar
  12. 12.
    A. El Fatimy, N. Dyakonova, Y. Meziani, T. Otsuji, W. Knap, S. Vandenbrouk, K. Madjour, D. Théron, C. Gaquiere, M. A. Poisson, S. Delage, P. Prystawko, and C. Skierbiszewski, J. Appl. Phys. 107, 024504 (2010).CrossRefGoogle Scholar
  13. 13.
    A. Lisauskas, W. von Spiegel, S. Boubanga-Tombet, A. El Fatimy, D. Coquillat, F. Teppe, N. Dyakonova, W. Knap, and H. G. Roskos, Electron. Lett. 44, 408 (2008).CrossRefGoogle Scholar
  14. 14.
    A. El Fatimy, J. C. Delagnes, A. Younus, E. Nguema, F. Teppe, W. Knap, E. Abraham, and P. Mounaix, Opt. Commun. 282, 3055 (2009).CrossRefGoogle Scholar
  15. 15.
    A. Lisauskas, U. Pfeiffer, E. Öjefors, P. Haring Bolìvar, D. Glaab, and H. G. Roskos, J. Appl. Phys. 105, 114511 (2009).CrossRefGoogle Scholar
  16. 16.
    W. Knap, M. Dyakonov, D. Coquillat, F. Teppe, N. Dyakonova, J. Łusakowski, K. Karpierz, M. Sakowicz, G. Valusis, D. Seliuta, I. Kasalynas, A. El Fatimy, Y. M. Meziani, and T. Otsuji, J. Infrared Millim. Terahertz Waves 30, 1319 (2009).Google Scholar
  17. 17.
    V. M. Muravev, I. V. Kukushkin, J. Smet, and K. von Klitzing, Pis'ma v Zh. Eksper. Teor. Fiz. 90, 216 (2009) [JETP Letters 90, 197 (2009)].Google Scholar
  18. 18.
    S. J. Allen, Jr., D. C. Tsui, and R. A. Logan, Phys. Rev. Lett. 38, 980 (1977).CrossRefGoogle Scholar
  19. 19.
    T. N. Theis, J. P. Kotthaus, and P. J. Stiles, Solid State Commun. 24, 2737 (1977).CrossRefGoogle Scholar
  20. 20.
    T. N. Theis, Surface Science 98, 515(1980).CrossRefGoogle Scholar
  21. 21.
    V. V. Popov, M. S. Shur, G. M. Tsymbalov, and D. V. Fateev, Int. J. High Speed Electronics and Systems 17, 557 (2007).CrossRefGoogle Scholar
  22. 22.
    A. V. Muravjov, D. B. Veksler, V. V. Popov, O. V. Polischuk, N. Pala, X. Hu, R. Gaska, H. Saxena, R. E. Peale, and M. S. Shur, Appl. Phys. Lett. 96, 042105 (2010).CrossRefGoogle Scholar
  23. 23.
    A. V. Chaplik, Surf. Sci. Reports 5, 289 (1985).CrossRefGoogle Scholar
  24. 24.
    V. V. Popov, A. N. Koudymov, M. Shur, and O. V. Polischuk, J. Appl. Phys. 104, 024508 (2008).CrossRefGoogle Scholar
  25. 25.
    V. V. Popov, O. V. Polischuk, and M. S. Shur, J. Appl. Phys. 98, 033510 (2005).CrossRefGoogle Scholar
  26. 26.
    V. V. Popov, O. V. Polischuk, W. Knap, and A. El Fatimy, Appl. Phys. Lett. 93, 263503 (2008).CrossRefGoogle Scholar
  27. 27.
    L. Zheng, W. L. Schaich, and A. H. MacDonald, Phys. Rev. B 41, 8493 (1990).CrossRefGoogle Scholar
  28. 28.
    C. D. Ager, R. J. Wilkinson, and H. P. Hughes, J. Appl. Phys. 71, 1322 (1992).CrossRefGoogle Scholar
  29. 29.
    O. R. Matov, O. F. Meshkov, O. V. Polischuk, and V. V. Popov, Int. J. Infrared and Millimeter Waves 14, 1455 (1993).CrossRefGoogle Scholar
  30. 30.
    R. J. Wilkinson, C. D. Ager, T. Duffield, H. P. Hughes, D. G. Hasko, H. Ahmed, J. E. F. Frost, D. C. Peacock, D. A. Ritchie, and G. A. C. Jones, J. Appl. Phys. 71, 6049 (1992).CrossRefGoogle Scholar
  31. 31.
    C. D. Ager and H. P. Hughes, Sol. St. Commun. 83, 627 (1992).CrossRefGoogle Scholar
  32. 32.
    O. R. Matov, O. F. Meshkov, and V. V. Popov, Zh. Eksp. Teor. Fiz. 113, 988 (1998) [JETP 86, 538 (1998)].Google Scholar
  33. 33.
    O. R. Matov, O. V. Polischuk, and V. V. Popov, Zh. Eksp. Teor. Fiz. 122, 586 (2002) [JETP 95, 505 (2002)].Google Scholar
  34. 34.
    V. V. Popov, O. V. Polischuk, T. V. Teperik, X. G. Peralta, S. J. Allen, N. J. M. Horing, and M. C. Wanke, J. Appl. Phys. 94, 3556 (2003).CrossRefGoogle Scholar
  35. 35.
    D. V. Fateev, V. V. Popov, and M. S. Shur, Fiz. Tekh. Poluprovodn. (St. Petersburg) 44, 1455 (2010) [Semiconductors 44, 1455 (2010)].Google Scholar
  36. 36.
    A. Shchepetov, C. Gardès, Y. Roelens, A. Cappy, S. Bollaert, S. Boubanga-Tombet, F. Teppe, D. Coquillat, S. Nadar, N. Dyakonova, H. Videlier, W. Knap, D. Seliuta, R. Vadoclis, and G. Valušis, Appl. Phys. Lett. 92, 242105 (2008).CrossRefGoogle Scholar
  37. 37.
    S. Boubanga-Tombet, F. Teppe, D. Coquillat, S. Nadar, N. Dyakonova, H. Videlier, W. Knap, A. Shchepetov, C. Gardès, Y. Roelens, S. Bollaert, D. Seliuta, R. Vadoclis, and G. Valušis, Appl. Phys. Lett. 92, 212101 (2008).CrossRefGoogle Scholar
  38. 38.
    M. I. Dyakonov, Fiz. Tekh. Poluprovodn. (St. Petersburg) 42, 998 (2008) [Semiconductors 42, 984 (2008)].Google Scholar
  39. 39.
    V. V. Popov, Appl. Phys. Lett. 93, 083501 (2008).CrossRefGoogle Scholar
  40. 40.
    D. Coquillat, S. Nadar, F. Teppe, N. Dyakonova, S. Boubanga-Tombet, W. Knap, T. Nishimura, Y.M. Meziani, T. Otsuji, V. V. Popov, and G. M. Tsymbalov, Optics Express 18, 6024 (2010).CrossRefGoogle Scholar
  41. 41.
    V. V. Popov, D. V. Fateev, O. V. Polischuk, and M. S. Shur, Optics Express 18, 16771 (2010).CrossRefGoogle Scholar
  42. 42.
    G. R. Aizin, D. V. Fateev, G. M. Tsymbalov, and V. V. Popov, Appl. Phys. Lett. 91, 163507 (2007).CrossRefGoogle Scholar
  43. 43.
    G. R. Aizin, V. V. Popov, and O. V. Polischuk, Appl. Phys. Lett. 89, 143512 (2006).CrossRefGoogle Scholar
  44. 44.
    X. G. Peralta, S. J. Allen, M. C. Wanke, N. E. Harff, J. A. Simmons, M. P. Lilly, J. L. Reno, P. J. Burke, and J. P. Eisenstein, Appl. Phys. Lett. 81, 1627 (2002).CrossRefGoogle Scholar
  45. 45.
    E. A. Shaner, M. Lee, M. C. Wanke, A. D. Grine, J. L. Reno, and S. J. Allen, Appl. Phys. Lett. 87, 193507 (2005).CrossRefGoogle Scholar
  46. 46.
    E. A. Shaner, M. C. Wanke, A. D. Grine, S. K. Lyo, J. L. Reno, and S. J. Allen, Appl. Phys. Lett. 90, 181127 (2007).CrossRefGoogle Scholar
  47. 47.
    K. V. Marem’yanin, D. M. Ermolaev, D. V. Fateev, S. V. Morozov, N. A. Maleev, V. E. Zemlyakov, V. I. Gavrilenko, V. V. Popov, and S. Yu. Shapoval, Pis’ma v Zh. Tekh. Fiz. (St. Petersburg) 36 (8), 39 (2010) [Tech. Phys. Lett. 36, 365 (2010)].Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Kotelnikov Institute of Radio Engineering and Electronics (Saratov Branch) RASSaratovRussia
  2. 2.Saratov State UniversitySaratovRussia

Personalised recommendations