Half Cycle Terahertz Pulse Generation by Prism-Coupled Cherenkov Phase-Matching Method

  • Kodo Kawase
  • Shingo Ichino
  • Koji Suizu
  • Takayuki Shibuya
Article

Abstract

Nonlinear optical terahertz wave generation is a promising method for realizing a practical source with wide frequency range and high peak power. Unfortunately, many nonlinear crystals have a strong absorption in the terahertz frequency region. This limits efficient and widely tunable terahertz wave generation. The Cherenkov phase-matching method is one of the most promising techniques for overcoming these problems. We propose a prism-coupled Cherenkov phase-matching method, in which a prism with a suitable refractive index at terahertz frequencies is coupled to a nonlinear crystal. We demonstrate prism-coupled Cherenkov phase-matching terahertz generation using the DAST and LiNbO3 crystals. With a DAST crystal, we obtain a spectral flat tunability up to 10 THz by difference frequency generation. With a LiNbO3 crystal, we observe a spectral flat broadband terahertz pulse generation up to 5 THz pumped by a femto second fiber laser. The obtained temporal waveform is an ideal half cycle pulse suitable for reflection terahertz tomography.

Keywords

Terahertz wave Nonlinear optics Cherenkov phase-matching Tomography 

References

  1. 1.
    G. D. Boyd, T. J. Bridges, C. K. N. Patel, and E. Buehler, “ Phase-matched submillimeter wave generation by difference-frequency mixing in ZnGeP2,” Appl. Phys. Lett. 21, 553–555 (1972).CrossRefGoogle Scholar
  2. 2.
    W. Shi, Y. J. Ding, N. Fernelius, and K. Vodopyanov, “Efficient, tunable, and coherent 0.18–5.27-THz source based on GaSe crystal,” Opt. Lett. 27, 1454–1456 (2002).CrossRefGoogle Scholar
  3. 3.
    K. Kawase, M. Mizuno, S. Sohma, H. Takahashi, T. Taniuchi, Y. Urata, S. Wada, H. Tashiro, and H. Ito, "Difference-frequency terahertz-wave generation from DAST by use of an electronically tuned Ti:sapphire laser," Opt. Lett. 24, 1065–1067 (1999).CrossRefGoogle Scholar
  4. 4.
    K. Kawase, H. Minamide, K. Imai, J. Shikata, and H. Ito, “Injection-seeded terahertz-wave parametric generator with wide tenability,” Appl. Phys. Lett. 80, 195–197 (2002).CrossRefGoogle Scholar
  5. 5.
    Y. Sasaki, A. Yuri, K. Kawase, H. Ito, “Terahertz-wave surface-emitted difference frequency generation in slant-stripe-typed periodically poled LiNbO3 crystal”, Appl. Phys. Lett. 81, 3323–3325 (2002).CrossRefGoogle Scholar
  6. 6.
    D. H. Auston, K. P. Cheung, J. A. Valdmanis, and D. A. Kleinman, “Cherenkov radiation from femtosecond optical pulses in electro-optic media,” Phys. Rev. Lett. 53, 1555–1558 (1984).CrossRefGoogle Scholar
  7. 7.
    D. A. Kleinman and D. H. Auston, “Theory of electro-optic shock radiation in nonlinear optical media,” IEEE J. Quantum Electron. 20, 964–970 (1984).CrossRefGoogle Scholar
  8. 8.
    J. Hebling, G. Almasi, I. Kozma, and J. Kuhl, “Velocity matching by pulse front tilting for large area THz-pulse generation,” Opt. Express 10, 1161–1166 (2002).Google Scholar
  9. 9.
    J. K. Wahlstrand and R. Merlin, “Cherenkov radiation emitted by ultrafast laser pulses and the generation of coherent polaritons,” Phys. Rev. B 68, 054301 (2003).CrossRefGoogle Scholar
  10. 10.
    K.-L. Yeh, M. C. Hoffmann, J. Hebling, and K. A. Nelson, “Generation of 10 μJ ultrashort THz pulses by optical rectification,” Appl. Phys. Lett. 90, 171121 (2007).CrossRefGoogle Scholar
  11. 11.
    S. B. Bodrov, A. N. Stepanov, M. I. Bakunov, B. V. Shishkin1, I. E. Ilyakov, and R. A. Akhmedzhanov, “Highly efficient optical-to-terahertz conversion in a sandwich structure with LiNbO3 core,” Opt. Express 17, 1871–1879 (2009).CrossRefGoogle Scholar
  12. 12.
    K. Suizu, T. Tutui, T. Shibuya, T. Akiba, and K. Kawase, “Cherenkov phase-matched monochromatic THz-wave generation using difference frequency generation with lithium niobate crystal,” Opt. Express 16, 7493–7498 (2008).CrossRefGoogle Scholar
  13. 13.
    T. Shibuya, T. Tsutsui, K. Suizu, T. Akiba, and K. Kawase, “Efficient cherenkov-type phase-matched widely tunable THz-wave generation via an optimized pump beam shape,” Appl. Phys. Express 2, 032302 (2009).CrossRefGoogle Scholar
  14. 14.
    K. Suizu, K. Koketsu, T. Shibuya, T. Tsutsui, T. Akiba, and K. Kawase, “Extremely frequency-widened terahertz wave generation using Cherenkov-type radiation,” Optics Express 17, 6676–6681 (2009).CrossRefGoogle Scholar
  15. 15.
    K. Suizu, T. Tsutsui, T. Shibuya, T. Akiba, and K. Kawase, “Cherenkov phase-matched THz-wave generation with surfing configuration for bulk lithium niobate crystal,” Optics Express, 17, 7102–7109 (2009).CrossRefGoogle Scholar
  16. 16.
    K. Kawase, M. Sato, K. Nakamura, T. Taniuchi, and H. Ito, “Uni-directional radiation of widely tunable THz-wave using a prism coupler under non-collinear phase matching condition,” Appl. Phys. Lett. 71, 753–755 (1997).CrossRefGoogle Scholar
  17. 17.
    H. Ito, K. Suizu, T. Yamashita, A. Nawahara, and T. Sato, “Random frequency accessible broad tunable terahertz-wave source using phase-matched 4-dimethylamino-N-methyl-4-stilbazolium tosylate (DAST) crystal,” Jpn. J. Appl. Phys. 46, 7321–7324 (2007).CrossRefGoogle Scholar
  18. 18.
    F. Pan, G. Knopfle, Ch. Bosshard, S. Follonier, R. Spreiter, M. S. Wong, and P. Gunter, “Electro-optic properties of the organic salt 4-N,N-dimethylamino-4’-N’-methyl-stilbazolium tosylate,” Appl. Phys. Lett. 69, 13–15 (1996).CrossRefGoogle Scholar
  19. 19.
    H. Ito, K. Miyamoto, and H. Minamide, “Ultra-broadband, frequency-agile THz-wave generator and its applications,” in Advanced Solid-State Photonics, (Optical Society of America, 2008), WD1.Google Scholar
  20. 20.
    K. Suizu, K. Miyamoto, T. Yamashita, and H. Ito, “High-power terahertz-wave generation using DAST crystal and detection using mid-infrared powermeter,” Opt. Lett. 32, 2885–2887 (2007).CrossRefGoogle Scholar
  21. 21.
    T. Taniuchi, S. Ikeda, S. Okada, and H. Nakanishi, “Tunable Sub-Terahertz Wave Generation from an Organic DAST Crystal,” Jpn. J. Appl. Phys. 44, L652-L654 (2005).CrossRefGoogle Scholar
  22. 22.
    J. Hebling, A. G. Stepanov, G. Almasi, B. Bartal, and J. Kuhl, “Tunable THz pulse generation by optical rectification of ultrashort laser pulses with tilted pulse fronts,” Appl. Phys. B 78, 593–599 (2004).CrossRefGoogle Scholar
  23. 23.
    D. M. Mittleman, R. H. Jacobsen, and M. G. Nuss, “T-ray imaging,” IEEE J. Sel. Top. Quantum Elctron. 2, 679–692 (1996).CrossRefGoogle Scholar
  24. 24.
    D. M. Mittleman, S. Hunshe, L. Boivin, and M. G. Nuss, “T-ray tomography,” Opt. Lett. 22, 904–906 (1997).CrossRefGoogle Scholar
  25. 25.
    A. J. Fitzgerald, B. E. Cole, and P. F. Taday, “Nondestructive analysis of tablet coating thickness using terahertz pulsed imaging,” J. Pharm. Sci. 94, 177–183 (2005).CrossRefGoogle Scholar
  26. 26.
    T. Yasui, T. Yasuda, K. Sawanaka, and T Araki, “Terahertz paintmeter for noncontact monitoring of thickness and drying progress in a paint film,” Appl. Opt. 44, 6849–6856 (2005).CrossRefGoogle Scholar
  27. 27.
    D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178 (1991).CrossRefGoogle Scholar
  28. 28.
    J. Takayanagi, S. Kanamori, K. Suizu, M. Yamashita, T. Ouchi, S. Kasai, H. Ohtake, H. Uchida, N. Nishizawa, and K. Kawase, “Generation and detection of broadband coherent terahertz radiation using 17-fs ultrashort pulse fiber laser,” Opt. Express 16, 12859–12865 (2008).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Kodo Kawase
    • 1
    • 2
  • Shingo Ichino
    • 1
  • Koji Suizu
    • 1
  • Takayuki Shibuya
    • 1
    • 2
  1. 1.Nagoya University, Ecotopia, Furo-choNagoyaJapan
  2. 2.RIKEN, Advanced Science InstituteSendaiJapan

Personalised recommendations