A Review on Terahertz Communications Research

  • Thomas Kleine-OstmannEmail author
  • Tadao Nagatsuma
Invited Review Article


The increasing demand of unoccupied and unregulated bandwidth for wireless communication systems will inevitably lead to the extension of operation frequencies toward the lower THz frequency range. Higher carrier frequencies will allow for fast transmission of huge amounts of data as needed for new emerging applications. Despite the tremendous hurdles that have to be overcome with regard to sources and detectors, circuit and antenna technology and system architecture to realize ultrafast data transmission in a scenario with extensive transmission loss, a new area of research is beginning to form. In this article we give an overview of emerging technologies and system research that might lead to ubiquitous THz communication systems in the future.


Terahertz communications Ultra-broadband short-range indoor communication systems Long-range outdoor communication systems THz modulators Ray tracing Channel modelling Uni-travelling-carrier photodiodes Schottky barrier diodes THz antennas THz transmitters THz receivers 



The author (TKO) would like to thank C. Jastrow, K. Münter and T. Schrader from Physikalisch-Technische Bundesanstalt (PTB) and S. Priebe, M. Jacob, R. Piesiewicz and T. Kürner from the Institute for Communications Technology at Technical University Braunschweig for the joint work on channel characterization and transmission experiments. Furthermore TKO would like to acknowledge the fruitful discussions within the framework of the Terahertz Communications Lab ( where four research groups from PTB, Technical University Braunschweig and University of Marburg work together on the fundamentals of THz communications. TKO would like to thank M. Koch and J. Schöbel for the development of concepts and scientific discussions. He would also like to thank B. Spitschan, P. Schlegel und A. Gudat, all from the Institute for Communications Technology at Technical University Braunschweig, and J. Hartmann from Rohde & Schwarz Vertriebs-GmbH for the supply of measurement equipment and participation in preliminary experiments, as well as for helpful discussions.

The author (TN) wishes to thank Y. Kado, N. Kukutsu, A. Hirata, H.-J. Song, R. Yamaguchi, H. Takahashi, K. Ajito, T. Furuta, A. Wakatsuki, Y. Muramoto, T. Kosugi, K. Murata, N. Shigekawa, T. Enoki, and K. Iwatsuki all from NTT Laboratories, T. Ishibashi of NTT Electronics, H. Ito of Kitasato University, Y. Fujimoto, K. Miyake, T. Takada, and M. Kawamura all with Osaka University, H. Ikegawa, H. Nishikawa, T. Nakayama, and T. Inada all from Fuji Television Network, N. Iai, S. Okabe, S. Kimura Y. Endo, T. Ikeda, and K. Shogen all from NHK Science and Technical Research Laboratories, for their contribution and efforts in the THz communications research projects. TN also would like to express thanks to members of the study group on THz communications at Kinki Bureau of Telecommunications in the Ministry of Internal Affairs and Communications (MIC), Japan. He would like to acknowledge I. Hosako of National Institute of Information and Communications Technology, and D. M. Britz of AT&T Labs Research - Shannon Labs for their stimulating discussion and support. Part of this work was supported by the “Research and Development Project for the Expansion of Radio Spectrum Resources” made available by the MIC, and by the Ministry of Education, Science, Sports and Culture, Grant-in-Aid for Scientific Research (A), 20246062, 2008.


  1. 1.
    Cherry, S., Edholm’s law of bandwidth, IEEE Spectr. 41, 50 (2004).Google Scholar
  2. 2.
    M. Jacob, S. Priebe, C. Jastrow, T. Kleine-Ostmann, T. Schrader, T. Kürner, An Overview of ongoing activities in the field of channel modeling, spectrum allocation and standardization for mm-wave and THz indoor communications, IEEE Globecom 2009, Honolulu, USA, Dec. 2009.Google Scholar
  3. 3.
    D. C. O'Brien, G. E. Faulkner, E. B. Zyambo, D. J. Edwards, M. Whitehead, P. Stavrinou, G. Parry, J. A. Bellon, M. J. N. Sibley, V.A. Lalithambika and V.M. Joyner, High-speed integrated transceivers for optical wireless, IEEE Communications Magazine 41, 58-62 (2003).CrossRefGoogle Scholar
  4. 4.
    M. Wolf and D. Kress, Short-Range Wireless Infrared Transmission: The Link budget compared to RF, IEEE Wireless Communications, 10, 8-14 (2003).CrossRefGoogle Scholar
  5. 5.
    R. Piesiewicz, T. Kleine-Ostmann, N. Krumbholz, D. Mittleman, M. Koch, J. Schöbel and T. Kürner, Short-range ultra broadband terahertz communications: concept and perspectives, IEEE Antennas & Propagation Magazine 49, 24-39 (2007).CrossRefGoogle Scholar
  6. 6.
    J. Federici and L. Moeller, Review of terahertz and subterahertz wireless communications, Journ. Appl. Phys. 107, 111101 (2010).CrossRefGoogle Scholar
  7. 7.
    M. J. Fitch and R. Osiander, Terahertz Waves for Communications and Sensing, Johns Hopkins APL Techn. Dig. 25, 348 (2004).Google Scholar
  8. 8.
  9. 9.
    B(08)058 annex 3draft cept brief on wrc-11 agenda item 1.6 (bands above 275 ghz),
  10. 10.
  11. 11.
  12. 12.
    L.W. Couch, Digital and Analog Communication Systems, Prentice Hall 1997, pp. 560-572.Google Scholar
  13. 13.
    Tech. Dig. IEEE MTT-S International Microwave Symposium Workshop, WSN/WMD/WFE, Honolulu (2007).Google Scholar
  14. 14.
    M. Asada, N. Orihashi, and S. Suzuki, Voltage-controlled harmonic oscillation at about 1 THz in resonant tunneling diodes integrated with slot antennas, Japanese Journal of Applied Physics 46, 2904-2906 (2007).CrossRefGoogle Scholar
  15. 15.
    T. Unuma, N. Sekine, and K. Hirakawa, Dephasing of Bloch oscillating electrons in GaAs-based superlattices due to interface roughness scattering, Appl. Phys. Lett. 89, 161913 (2006).CrossRefGoogle Scholar
  16. 16.
    T. Suemitsu, Y. M. Meziani, Y. Hosono, M. Hanabe, T. Otsuji, E. Sano, Novel plasmon-resonant terahertz-wave emitter using a double-decked HEMT structure”, Tech. Dig. 65th Device Research Conference (DRC), 157-158 (2007).Google Scholar
  17. 17.
    G. Scalari, C. Walther, M. Fischer, M. I. Amanti, R. Terazzi, N. Hoyler, H. Beere, D. Ritchie, and J. Faist, Recent progress on long wavelength quantum cascade laser operating between 1-2 THz, Tech. Dig. IEEE LEOS Annual Meeting, ThJ1, Florida, 755-756 (2007).Google Scholar
  18. 18.
    T. Nagatsuma, H. Ito, and T. Ishibashi, High-power RF photodiodes and their applications, Laser & Photonics Review 3, 123-137 ( 2009).CrossRefGoogle Scholar
  19. 19.
    A. Wakatsuki, T. Furuta, Y. Muramoto, T. Yoshimatsua, and H. Ito, High-power and broadband sub-terahertz wave generation using a J-band photomixer module with rectangular-waveguide output port, Tech. Dig. 2008 Infrared, Millimeter and Terahertz Waves (IRMMW-THz 2008), M4K2.1199 (2008).Google Scholar
  20. 20.
    N. Shimizu, and T. Nagatsuma, Photodiode-integrated microstrip antenna array for subterahertz radiation, IEEE Photon. Technol. Lett. 18, 743-745 (2006).CrossRefGoogle Scholar
  21. 21.
    K. J. Williams, D. A. Tulchinsky, and J. C. Campbell, High-power photodiodes, Tech. Dig. Microwave Photonics, 9-13 (2007).Google Scholar
  22. 22.
    T. Minotani, A. Hirata, and T. Nagatsuma, A broadband 120-GHz. Schottky-diode receiver for 10-Gbit/s wireless links, IEICE Trans. Electron. E86-C, 1501-1505 (2003).Google Scholar
  23. 23.
    H.-J. Song, K. Ajito, A. Hirata, A. Wakatsuki, Y. Muramoto, T. Furuta, N. Kukutsu, T. Nagatsuma and Y. Kado, 8 Gbit/s wireless data transmission at 250 GHz, IEE Electron. Lett., 45, 1121-1122 (2009).CrossRefGoogle Scholar
  24. 24.
    R. Piesiewicz, M. Jacob, M. Koch, J. Schoebel, T. Kürner, Performance analysis of future multi-gigabit wireless communication systems at THz frequencies with highly directive antennas in realistic indoor environments, IEEE Journal Select. Topics Quant. Electronics, 14, 421 (2008).CrossRefGoogle Scholar
  25. 25.
    R. Piesiewicz, T. Kleine-Ostmann, N. Krumbholz, D.Mittleman, M. Koch, and T. Kürner, THz characterisation of building materials, Electron. Lett. 41, 1002-1004 (2005).CrossRefGoogle Scholar
  26. 26.
    R. Piesiewicz, C. Jansen, D. Mittleman, T. Kleine-Ostmann, M. Koch and T. Kürner, Scattering analysis for the modeling of THz communication systems, IEEE Trans. on Antennas & Propagation (special issue on Optical and THz Antenna Technology) 55, 3002-3009 (2007).Google Scholar
  27. 27.
    D. Turchinovich, A. Kammoun, P. Knobloch, T. Dobbertin, and M. Koch, Flexible All-plastic mirrors for the THz range, Applied Physics A 74, 291 (2002).CrossRefGoogle Scholar
  28. 28.
    US patent 6.954.309 B2Google Scholar
  29. 29.
    M. Born, E. Wolf, Principles of Optics, Cambridge University Press, Cambridge, England, 1998.Google Scholar
  30. 30.
    R. Piesiewicz, K. Baaske, K. Gerlach, M. Koch, T. Kürner, The potential of dielectric mirrors as key elements in future non-line-of-sight indoor terahertz communication systems, Proc. 16th Intl. Symp. on Space Terahertz Technology, Göteborg, Sweden, May 2005.Google Scholar
  31. 31.
    N. Krumbholz, K. Gerlach, F. Rutz, M. Koch, R. Piesiewicz, T. Kürner, D. Mittleman, Omnidirectional terahertz mirrors: a key element for future THz communication systems, Appl. Phys. Lett. 88, 202905 (2006).CrossRefGoogle Scholar
  32. 32.
    I. A. Ibraheem, N. Krumbholz, D. Mittleman and M. Koch, Low-dispersive dielectric mirrors for future wireless terahertz communication systems, IEEE Microwave and Wireless Components Letters 18, 67 (2008).CrossRefGoogle Scholar
  33. 33.
    C. Jansen, S. Wietzke, V. Astley, D. M. Mittleman, and M. Koch, Mechanically flexible polymeric compound one-dimensional photonic crystals for terahertz frequencies, Appl. Phys. Lett. 96, 111108 (2010).CrossRefGoogle Scholar
  34. 34.
    T. S. Bird, A. R. Weily and S. M. Hanham, Antennas for future very-high throughput wireless LANs, IEEE Antennas & Propagation Society Symposium, San Diego, CA, 5 - 12 July, 2008.Google Scholar
  35. 35.
    P. Herrero, M. Jacob, J. Schöbel, Planar antennas and interconnection components for 122 GHz and 140 GHz future communication systems, THz Metrology, Frequenz (special issue on Terahertz Technologies and Applications) 62, 137-148 (2008).Google Scholar
  36. 36.
    I. H. Libon, S. Baumgärtner, M. Hempel, N. E. Hecker, J. Feldmann, M. Koch, and P. Dawson, An optically controllable terahertz filter, Appl. Phys. Lett. 76, 2821 (2000).CrossRefGoogle Scholar
  37. 37.
    R. Kersting, G. Strasser, and K. Unterrainer, Terahertz phase modulator, Electron. Lett. 36, 1156 (2000).CrossRefGoogle Scholar
  38. 38.
    T. Kleine-Ostmann, P. Dawson, K. Pierz, G. Hein, and M. Koch, Room-temperature operation of an electrically driven terahertz modulator, Appl. Phys. Lett. 84, 3555-3557 (2004).CrossRefGoogle Scholar
  39. 39.
    S. J. Allen, D. C. Tsui, and R. A. Logan, Observation of the Two-Dimensional Plasmon in Silicon Inversion Layers, Phys. Rev. Lett. 38, 980 (1977).CrossRefGoogle Scholar
  40. 40.
    T. Kleine-Ostmann, K. Pierz, G. Hein, P. Dawson, M. Marso and M. Koch, Spatially resolved measurements of depletion properties of large gate 2DEG semiconductor terahertz modulators, Journ. Appl. Phys. 105, 093707 (2009).CrossRefGoogle Scholar
  41. 41.
    T.-R. Tsai, C.-Y. Chen, R.-P. Pan, C.-L. Pan, and X.-C. Zhang, Electrically controlled room temperature terahertz phase shifter with liquid crystal, IEEE Microw. Wirel. Compon. Lett. 14, 77 (2004).CrossRefGoogle Scholar
  42. 42.
    C.-Y. Chen, T.-R. Tsai, C.-L. Pan, and R.-P. Pan, Room temperature terahertz phase shifter based on magnetically controlled birefringence in liquid crystals, Appl. Phys. Lett. 83, 4497 (2003).CrossRefGoogle Scholar
  43. 43.
    R. Wilk, N. Vieweg, O. Kopschinski, and M. Koch, Liquid crystal based electrically switchable Bragg structure for THz waves, Opt. Exp. 17, 7377 (2009).CrossRefGoogle Scholar
  44. 44.
    T. Kleine-Ostmann, K. Pierz, G. Hein, P. Dawson, and M. Koch, Audio signal transmission over THz communication channel using semiconductor modulator, Electron. Lett. 40, 124-126 (2004).CrossRefGoogle Scholar
  45. 45.
    T. K. Sarkar, J. Zhong, K. Kyungjung, A. Medouri, and M. Salazar-Palma, A survey of various propagation models for mobile communication, IEEE Antennas and Propagation Magazine 45, 51–82 (2003).CrossRefGoogle Scholar
  46. 46.
    S. Yong and C. Chong, An overview of multigigabit wireless through millimeter wave technology: potentials and technical challenges, EURASIP Journal on Wireless Communications and Networking 2007, 1–10 (2007).CrossRefGoogle Scholar
  47. 47.
    H. Xu, V. Kukshya and T. S. Rappaport, Spatial and temporal characteristics of 60-GHz indoor channels, IEEE J. on Selected Areas in Communications 20, 620-630 (2002).CrossRefGoogle Scholar
  48. 48.
    P. Marinier, G. Y. Delisle, L. Talbi, A coverage prediction technique for indoor wireless millimeter waves system, Wireless Personal Communications 3, 257-271 (1996).CrossRefGoogle Scholar
  49. 49.
    T. Kürner, M. Jacob, R. Piesiewicz, J. Schöbel, An integrated simulation environment for the investigation of future indoor THz communication systems, Simulation 84, 123-130 (2008).CrossRefGoogle Scholar
  50. 50.
  51. 51.
  52. 52.
    C. Jastrow, K. Münter, R. Piesiewicz, T. Kürner, M. Koch and T. Kleine-Ostmann, 300 GHz Transmission System, Electron. Lett. 44, 213-214 (2008).CrossRefGoogle Scholar
  53. 53.
    T. Kleine-Ostmann, T. Schrader, M. Bieler, U. Siegner, C. Monte, B. Gutschwager, J. Hollandt, A. Steiger, L. Werner, R. Müller, G. Ulm, I. Pupeza, and M. Koch, THz Metrology, Frequenz (special issue on Terahertz Technologies and Applications) 62, 137-148 (2008).Google Scholar
  54. 54.
    C. Jastrow, S. Priebe, B. Spitschan, J. Hartmann, M. Jacob, T. Kürner, T. Schrader and T. Kleine-Ostmann, Wireless digital data transmission at 300 GHz, Electron. Lett. 46, 661-663 (2010).CrossRefGoogle Scholar
  55. 55.
    A. Hirata, T. Kosugi, H. Takahashi, R. Yamaguchi, F. Nakajima, T. Furuta, H. Ito, H. Sugahara, Y. Sato, and T. Nagatsuma, 120-GHz-band millimeter-wave photonic wireless link for 10-Gb/s data transmission, IEEE Trans. Microwave Theory Tech. 54, 1937-1944 (2006).CrossRefGoogle Scholar
  56. 56.
    A. Hirata, H. Takahashi, R. Yamaguchi, T. Kosugi, K. Murata, T. Nagatsuma, N. Kukutsu, and Y. Kado, Transmission characteristics of 120-GHz-band wireless link using radio-on-fiber technologies, J. Lightwave Technol. 26, 2338-2344 (2008).CrossRefGoogle Scholar
  57. 57.
    T. Kosugi, M. Tokumitsu, K. Murata, T. Enoki, H. Takahashi, A. Hirata, and T. Nagatsuma, 120-GHz Tx/Rx waveguide modules for 10-Gbit/s wireless link system, IEEE Compound Semiconduct. IC Symp. Dig., 25-28 (2006).Google Scholar
  58. 58.
    R. Yamaguchi, A. HIrata, T. Kosugi, H. Takahashi, N. Kukutsu, T. Nagatsuma, Y. Kado, H. Ikegawa, H. Nishikawa, and T. Nakayama, 10-Gbit/s MMIC wireless link exceeding 800 meters, Proc. 2008 IEEE RWS, TH1C-3, Florida (2008).Google Scholar
  59. 59.
    A. Hirata, H. Takahashi, N. Kukutsu, Y. Kado, H. Ikegawa, H. Nishikawa, T. Nakayama, and T. Inada, Transmission trial of television broadcast materials using 120-GHz-band wireless link, NTT Technical Review 7, March Issue (2009).Google Scholar
  60. 60.
    A. Hirata, R. Yamaguchi, T. Kosugi, H. Takahashi, K. Murata, T. Nagatsuma, N. Kukutsu, Y. Kado, N. Iai, S. Okabe, S. Kimura, H. Ikegawa, H. Nishikawa, T. Nakayama, and T. Inada, 10-Gbit/s wireless link using InP HEMT MMICs for generating 120-GHz-band millimeter-wave signal, IEEE Trans. Microwave Theory Tech. 57, 1102-1109 (2009).CrossRefGoogle Scholar
  61. 61.
    T. Nagatsuma, H.-J. Song, Y. Fujimoto, K. Miyake, A. Hirata, K. Ajito, A. Wakatsuki, T. Furuta, N. Kukutsu, and Y. Kado, Giga-bit wireless link using 300-400 GHz bands, Tech. Dig. IEEE International Topical Meeting on Microwave Photonics, Th.2.3 (2009).Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Physikalisch-Technische Bundesanstalt (PTB)BraunschweigGermany
  2. 2.Osaka UniversityToyonakaJapan

Personalised recommendations