Characteristics of the Beam-Steerable Difference-Frequency Generation of Terahertz Radiation

  • Ken-ichiro Maki
  • Takayuki Shibuya
  • Chiko Otani
  • Koji Suizu
  • Kodo Kawase
Article

Abstract

We have investigated the characteristics of a terahertz (THz) beam steering method based on a combination of difference-frequency generation (DFG) with the principle of the phased array antenna. In the DFG of THz radiation from a nonlinear optical crystal pumped by optical beams, the phase front of the THz radiation is indirectly tilted by adjusting the relative incidence angle between the pump beams to the crystal. A magnification of the steering angle with a factor of 193 is demonstrated as the most important effect provided by the method. The effect allows the use of a high-speed optical deflector for adjusting the incidence angle, accelerating the steering more than a hundred times compared with mechanical methods. The phase mismatching between the THz radiation and the pump beams as well as the refraction at the crystal surface limit the steering angle of the THz radiation to 56°, full width at half maximum.

Keywords

Beam steering Difference-frequency generation Phased array antenna Phase matching 

References

  1. 1.
    P. H. Siegel, “Terahertz technology,” IEEE Tran. Microwave Theory and Tech. 50, 910–928 (2002)CrossRefGoogle Scholar
  2. 2.
    B. B. Hu, and M. C. Nuss, “Imaging with terahertz waves,” Opt. Lett. 20, 1716–1718 (1995).CrossRefGoogle Scholar
  3. 3.
    Martin Koch, “ Terahertz Communications: A 2020 vision,” Terahertz Frequency Detection and Identification of Materials and Objects, R. E. Miles et al. (eds.), Springer Netherlands, 325–338 (2007)Google Scholar
  4. 4.
    D. M. Britz, “Evolution of extreme bandwidth personal and local area terahertz wireless networks,” Extended abstracts of 2nd international workshop on terahertz technology (TeraTech’09), 113–120 (2009)Google Scholar
  5. 5.
    L. Liu, N. Chen, and C. J. R. Sheppard, “Double-reflection polygon mirror for high-speed optical coherence microscopy,” Opt. Lett. 32, 3528–3530 (2007)CrossRefGoogle Scholar
  6. 6.
    K. Wiesauera, M.Pircherb, E. Götzingerb, S. Bauerc, R. Engelked, G. Ahrensd, G. Grütznerd, C. K. Hitzenbergerb, and D. Stiftera, “En-face scanning optical coherence tomography with ultra-high resolution for material investigation,” Opt. Express 13, 1015–1024 (2005)CrossRefGoogle Scholar
  7. 7.
    Y. Zuo, M. Mony, B. Bahamin, E. Grondin, V. Aimez, and D. V. Plant, “Bulk electro-optic deflector-based switches,” Appl. Opt. 46, 3323–3331 (2007)CrossRefGoogle Scholar
  8. 8.
    R. R. McLeod and S. K. Walter, “Acousto-optic parallel read/write head for optical disk data storage,” Appl. Opt. 45, 7065–7072 (2006)CrossRefGoogle Scholar
  9. 9.
    K. Maki, T. Shibuya, C. Otani, K. Suizu, and K. Kawase, “Terahertz Beam Steering via Tilted-Phase Difference-Frequency Mixing,” Appl. Phys. Express 2, 022301 (2009)CrossRefGoogle Scholar
  10. 10.
    K. Maki, and C. Otani, “Terahertz beam steering and frequency tuning by using the spatial dispersion of ultrafast laser pulses,” Opt. Express. 16(14), 10158–10169 (2008)CrossRefGoogle Scholar
  11. 11.
    K. Suizu, K. Miyamoto, T. Yamashita, and H. Ito, “High-power terahertz-wave generation using DAST crystal and detection using mid-infrared powermeter,” Opt. Lett. 32, 2885–2887 (2007)CrossRefGoogle Scholar
  12. 12.
    I. S. Gregory, W. R. Tribe, C. Baker, B. E. Cole, and M. J. Evans, “Continuous-wave terahertz system with a 60 dB dynamic range,” Appl. Phys. Lett. 86, 204104 (2005).CrossRefGoogle Scholar
  13. 13.
    A. M. Sinyukov, Z. Liu, Y. L. Hor, et al. “Rapid-phase modulation of terahertz radiation for high-speed terahertz imaging and spectroscopy,” Opt. Lett. 33(14) 1593–1595 (2008)CrossRefGoogle Scholar
  14. 14.
    R. J. Mailloux, Phased array antenna handbook (Artech house, 2005), Chap. 1.Google Scholar
  15. 15.
    S. Hisatake and T. Kobayashi, “Time-to-space mapping of a continuous light wave with picosecond time resolution based on an electrooptic beam deflection,” Opt. Express 14, 12704–12711 (2006)CrossRefGoogle Scholar
  16. 16.
    Y. Sasaki, Y. Avetisyan, H. Yokoyama, and H. Ito, “Surface-emitted terahertz-wave difference-frequency generation in two-dimensional periodically poled lithium niobate,” Opt. Lett. 30, 2927–2929 (2005)CrossRefGoogle Scholar
  17. 17.
    K. Suizu, T. Shibuya, S. Nagano, T. Akiba, K. Edamatsu, H. Ito, and K. Kawase, “Pulsed high peak power millimeter wave generation via difference frequency generation using periodically poled lithium noibate,” Jpn. J. Appl. Phys. 46, L982–L984 (2007)CrossRefGoogle Scholar
  18. 18.
    H. Ito, K. Suizu, T. Yamashita, A. Nawahara, and T. Sato, “Random frequency accessible broad tunable terahertz-wave source using phase-matched 4-dimethylamino-n-methyl-4-stilbazolium tosylate crystal,” Jpn. J. Appl. Phys. 46, 7321–7324 (2007).CrossRefGoogle Scholar
  19. 19.
    R. Winston, “Light collection within the framework of geometrical optics,” J. Opt. Soc. Am. 60, 245–247 (1970)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Ken-ichiro Maki
    • 1
  • Takayuki Shibuya
    • 2
  • Chiko Otani
    • 1
  • Koji Suizu
    • 2
  • Kodo Kawase
    • 2
  1. 1.Terahertz Sensing and Imaging LaboratoryAdvanced Science Institute, RIKENSendaiJapan
  2. 2.Nagoya UniversityNagoyaJapan

Personalised recommendations