Effects of Millimeter Waves Radiation on Cell Membrane - A Brief Review

Invited Review Article

Abstract

The millimeter waves (MMW) region of the electromagnetic spectrum, extending from 30 to 300 GHz in terms of frequency (corresponding to wavelengths from 10 mm to 1 mm), is officially used in non-invasive complementary medicine in many Eastern European countries against a variety of diseases such gastro duodenal ulcers, cardiovascular disorders, traumatism and tumor. On the other hand, besides technological applications in traffic and military systems, in the near future MMW will also find applications in high resolution and high-speed wireless communication technology. This has led to restoring interest in research on MMW induced biological effects. In this review emphasis has been given to the MMW-induced effects on cell membranes that are considered the major target for the interaction between MMW and biological systems.

Keywords

Millimeter waves Cell membrane Lipid bilayer Biological effects 

Reference

  1. 1.
    M.A. Rojavin, M.C. Ziskin, Medical application of millimeter waves. Q J M 91 (1998) 57-66.Google Scholar
  2. 2.
    V.N. Skresanov, I.V. Kas, E.A. Okhryamkina, V.P. Palamrchuck, and L. Tondy, Complex treatment cardiovascular disease with a low power millimeter-wave radiation. In Proc. IEEE 4th Int. Kharkov Symp. Phys. Eng. Microwaves, Millimeter, Submillimeter. Waves, Kharkov, Ukraine, vol.2 (2001) 939-940.Google Scholar
  3. 3.
    A.G. Pakhomov, Y. Akyel, O.N. Pakhomova, B.E. Stuck and M.R. Murphy, Current state and implications of research on biological effects of millimeter wave. Bioelectromagnetics 19 (1998) 393-413.CrossRefGoogle Scholar
  4. 4.
    X.-H. Li, J.-T. Tang, Y.-P. Liao, H.-K. Jin, J.-M. Zhou, G.-H. Wang, H. Wang, Millimeter wave in the treatment of acute radiation-induced cervical skin ulcers. J. Clin. Rehab. Tissue Eng. Res. 12 (2008) 663-666.Google Scholar
  5. 5.
    M. Markov, Expanding use of pulsed electromagnetic field therapy. Elec. Biol. And Med., 26 (2007) 257-274.CrossRefGoogle Scholar
  6. 6.
    W. -D. Li, W. Wang, J.-L. Chen, Efficacy of IZL-2003 immunotherapeutic system in patients with liver cancer. World Chinese J. Digestology 17 (2009) 3553-3557.MathSciNetGoogle Scholar
  7. 7.
    O.V. Betskii, Y.G. Yaremenko, The skin and electromagnetic waves. Millimeter Waves in Biol Med N1(11) (1998) 3-14.Google Scholar
  8. 8.
    T.I. Usichenko, H. Edinger, V. V. Gizhko, C. Lehmann, M. Wendt and F. Feyerherd, Low-Intensity Electromagnetic Millimeter Waves for Pain Therapy. eCAM 3 (2006) 201-207.CrossRefGoogle Scholar
  9. 9.
    M.C. Ziskin, Physiological mechanisms underlying millimeter wave therapy. In Bioelectromagnetics: Current Concepts NATO Science Series, S. Ayrapetyan & M. Markov Eds. Springer Press, The Netherlands, (2006) pp.241-251.CrossRefGoogle Scholar
  10. 10.
    A.G., Pakhomov, M. R., Murphy, Low-Intensity Millimeter Waves as a Novel Therapeutic Modality: non-thermal medical/biological treatments using electromagnetic waves and ionized gases. IEEE Trans Plasma Science 20 (2000) 34-40.CrossRefGoogle Scholar
  11. 11.
    M. Marcus, B. Pattan, Millimeter wave propagation: spectrum management implications. IEEE Microwave Mag 6 (2005) 54-63.CrossRefGoogle Scholar
  12. 12.
    C. Park and S. Rappaport, Short-range wireless communications for next-generation networks: UWB, 60 GHz millimetre wave WPAN, and ZigBee. IEEE Wireless Commun 14 (2007) 70-78.CrossRefGoogle Scholar
  13. 13.
    Proceedings of International Conference on Microwave and Millimeter Wave Technology, Ed.W. Hong, G. Yang. Nanjing, China IEEE Publisher, April 21-24, 2008. http://www.emfield.org/icmmt2008
  14. 14.
    ICNIRP Guidelines “Guidelines for Limiting Exposure to Time-varying Electric, Magnetic, and Electromagnetic fields (up to 300 GHz)”. Health Physics 74 (1998) 494-522.Google Scholar
  15. 15.
    ICNIRP Dosimetry of high frequency electromagnetic fields (100 kHz to 300 GHz) in Exposure to high frequency electromagnetic fields, biological effects and health consequences (100 kHz-300 GHz) (Eds P.Vecchia, R. Matthes, G. Ziegelberger J. Lin, R. Saunders, A. Swerdlow) 16 (2009) 52-62.Google Scholar
  16. 16.
    Adair, R. “Biophysical Limits on Athermal Effects of RF and Microwave Radiation” Bioelectromagnetics 24 (2003) 39-48.CrossRefGoogle Scholar
  17. 17.
    S. M. Motzkin, Biological effects of millimeter-wave radiation. In Biological Effects and Medical Applications of Electromagnetic Energy. Gandhi O.P. (Ed), Prentice Hall, Hanglewood Cliffs, NJ, (1990) 373.Google Scholar
  18. 18.
    E. Postow and L. Swicord, Window effects in the millimeter-wave region, in C. Polk, E. Postow (Eds), Handbook of Biological Effects of Electromagnetic Fields CRC Press LLC, Second Edition (1996) 537-541.Google Scholar
  19. 19.
    I. Belayev, Non-thermal Biological Effects of Microwaves, Microwave Review 11 (2005) 13-29.Google Scholar
  20. 20.
    A. Beneduci, Review on the mechanisms of interaction between millimeter waves and biological systems, in M.E. Bernstain (Ed), Bioelectrochemistry Research Developments, NOVAScience Publishers Inc, New York (2008) 35-80.Google Scholar
  21. 21.
    S.J. Webb and D.E. Dodds, Inhibition of Bacterial Cell Growth by 136 Microwaves. Nature 218 (1968) 374-375.CrossRefGoogle Scholar
  22. 22.
    W. Grundler, F. Keilmann, and H. Fröhlich, Resonant Growth Rat Response of Yeast Cells Irradiated by Weak Microwaves. Physics Letter A62 (1977) 463-466.CrossRefGoogle Scholar
  23. 23.
    H. Fröhlich, Biological coherence and response to external stimuli, Springer-Verlag Berlin, 1988, pp.1-24.Google Scholar
  24. 24.
    P. Gos, B. Eicher, J. Kohli, and W.D. Heyer, Extremely high frequency electromagnetic fields at low power density do not affect the division of exponential phase Saccharomyces cerevisiae cells. Bioelectromagnetics 18 (1997) 142-155.CrossRefGoogle Scholar
  25. 25.
    G. Yu, E.A. Coln, K.H. Schoenbach, M. Gellerman, P. Fox, L. Rec, S.J. Beebe, L. Shengang, A study on biological effects of low-intensity millimeter waves. Plasma Science IEEE Trans. 30 (2002) 1489-1496.CrossRefGoogle Scholar
  26. 26.
    A. Beneduci, Evaluation of the potential in vitro antiproliferative effects of millimeter waves at some therapeutic frequencies on RPMI 7932 human skin malignant melanoma cells. Cell Biochem. Biophys 55 (2009) 25-32.CrossRefGoogle Scholar
  27. 27.
    S. Hadjiloucas, M.S. Chahal and J.W. Bowen, Preliminary results on the non-thermal effects of 200–350 GHz radiation on the growth rate of S. cerevisiae cells in microcolonies. Phys. Med. Biol. 47 (2002) 3831-3841.CrossRefGoogle Scholar
  28. 28.
    P. Mueller, D. Ru, H. Tien, W. Wescott, Reconstitution of a cell membrane structure in vitro and its transformation into an excitable system, Nature 194 (1962) 979-980.CrossRefGoogle Scholar
  29. 29.
    V.M. Brovkovich, N.B. Kurilo, V.L. Barishpol, Action of millimeter-range electromagnetic radiation on the Ca pump of sarcoplasmic reticulum. Radiobiologia 31 (1991) 268-271 (in Russian)Google Scholar
  30. 30.
    A.A. Kataev, A.A. Alexandrov, L.L. Tikhonova, G.N. Berestovsky, Frequency dependent effects of the electromagnetic millimeter waves on the ion currents in the cell membrane of Nitellopsis: Non thermal action. Biofizika 38(1993) 446-462. (In Russian)Google Scholar
  31. 31.
    V.I. Geletyuk, V.N. Kazachenko, N.K. Chemeris, E.E. Fesenko, Dual effects of microwaves on single Ca2+-activated K+ channels in cultured kidney cells Vero. FEBS Letters 359 (1995) 85-88.CrossRefGoogle Scholar
  32. 32.
    E.E. Fesenko, V.I. Geletyuk, V.N. Kazachenko, N.K. Chemeris, Preliminary microwave irradiation of water solutions changes their channel-modifying activity. FEBS Letters 366 (1995) 49-52.CrossRefGoogle Scholar
  33. 33.
    E.E. Fesenko, and A.Ya. Gluvstein, Changes in the state of water, induced by radiofrequency electromagnetic fields. FEBS Letters 367 (1995) 53-55.CrossRefGoogle Scholar
  34. 34.
    A.F. Cojocaru, N.L. Cojocaru and Zh.I. Burkovetsakaya, Mechanisms of water-mediated action of weak radio-frequency electromagnetic radiation on biological objects. Biophysics 50 (2005) S141-S156.Google Scholar
  35. 35.
    O.V. Betskii, N.D. Devyatkov, V.V. Kislov, Low intensity millimeter waves in medicine and biology. Critical Reviews™ in Biomedical Engineering 28 (2000) 247-268.Google Scholar
  36. 36.
    G.S. Ayrapetyan, E.H. Dadasyan, E.R. Mikaleyan, S.V. Barseghyan, S. Ayrapetyan, Cell bathing medium as a target for non-thermal effect of MMW on heart muscle contractility. Progress in Elect. Magnetic Res. Symposium, Moscow, Russia (2009) 1057-1060.Google Scholar
  37. 37.
    V. P. Kalantaryan, Y.S. Babayan, E.S. Gevorgyan, S.N. Hakobayan, A.P. Antoyan, P.O. Vardevayan, Influence of low intensity coherent electromagnetic millimeter radiation on aqua solution of DNA. Prog. In Electromagnetics Res. Letters 13 (2010) 1-9.CrossRefGoogle Scholar
  38. 38.
    B.G. Yemets, On causes of biological efficiency of low-intensive millimeter waves. Int. J. Infrared and Millimeter Waves 19 (1998) 1587-1593.CrossRefGoogle Scholar
  39. 39.
    S.I. Alekseev, and M.C. Ziskin, Millimeter microwave effect on ion transport across lipid bilayer membranes. Bioelectromagnetics 16 (1995) 124-131.CrossRefGoogle Scholar
  40. 40.
    S.M. Motzkin, Low power continuous wave millimeter irradiation fails to produce biological effects in lipid vesicles, mammalian muscle cells, and E.coli. Digest of papers from Int. Symposium” MMW of non-thermal intensity Medicine” Moscow USSR Academy of Sciences, (1991) 367-368.Google Scholar
  41. 41.
    V.E. Andreev, O.V. Betskii, S.A. Il’ina, K.D. Kazarinov, and A.V. Putvinskii, in Non thermal Effects of Extremely High Frequency Electromagnetic Radiation, Moscow (1981) 167-176.Google Scholar
  42. 42.
    M.K. Logani and M.C. Ziskin, Continuous millimeter-wave radiation has no effect on lipid peroxidation in liposomes. Rad. Res. 145 (1996) 231-235.CrossRefGoogle Scholar
  43. 43.
    M.K. Logani and M.C. Ziskin, Millimeter waves at 25 mW/cm2 have no effect on hydroxyl radical-dependent lipid peroxidation. Electro and Magneto Biology, 17 (1998) 67-73.CrossRefGoogle Scholar
  44. 44.
    S.I. Alekseev and M.C. Ziskin, Effects of millimeter waves on ionic currents of Lymnaea Neurons. Bioelectromagnetics 20 (1999) 24-33.CrossRefGoogle Scholar
  45. 45.
    I. Szabo, J. Kappelmayer, S.I. Alekseev, and M. C. Ziskin, Millimeter wave induced reversible externalization of phosphatidylserine molecules in cells exposed in vitro. Bioelectromagnetics 27 (2006) 233-244.CrossRefGoogle Scholar
  46. 46.
    S.J. Martin, C.P. Reutelingesperger, A.J. McGahon, J.A. Rader, R.C. Van Schie, D.M. La Face, D.R. Green, Early redistribution of plasma membrane phosphatidylserine is a general feature of apoptosis regardless of the initiating stimulus: Inhibition by overexpresion of Bcl-2 and Abl. J. Exp. Med. 182 (1995) 1545-1556.CrossRefGoogle Scholar
  47. 47.
    A. Ramundo-Orlando, G. P. Gallerano, P. Stano, A. Doria, E. Giovenale, G. Messina, M. Cappelli, M. D’Arienzo, I. Spassovsky, Permeability changes induced by 130 GHz pulsed radiation on cationic liposomes loaded with carbonic anhydrase. Bioelectromagnetics 22 (2007) 303-313.Google Scholar
  48. 48.
    M. Zhadobov, R. Saileau, V. Viè, M. Hindi, L. Le Coq, and D. Thouroude, Interactions between 60-GHz millimeter waves and artificial biological membranes: dependence on radiation parameters. IEEE Tras. MW Theory and Tec. 54 (2006) 2534-2542.CrossRefGoogle Scholar
  49. 49.
    C. N. Nicolaz, M. Zhadobov, F. Desmots, R. Sauleau, D. Thouroude, D. Michel, Y. Le Drean, Absence of direct effect of low-power millimeter-wave radiation at 60.4 GHz on endoplasmic reticulum stress. Cell Biol. Toxicol. 25 (2009) 471-478.CrossRefGoogle Scholar
  50. 50.
    C. N. Nicolaz, M. Zhadobov, F. Desmots, A. Ansart, R. Sauleau, D. Thouroude, D. Michel, Y. Le Drean, Absence of direct effect of low-power millimeter-wave radiation at 60.4 GHz on endoplasmic reticulum stress. Bioelectroamgnetics 30 (2009) 365-373.CrossRefGoogle Scholar
  51. 51.
    A. Beneduci, G. Chidichimo, S. Tripepi, E. Perrotta, F. Cufone, Antiproliferative effect of MMW on human erythromyeloid leukemia cell line K562 in culture: ultrastructural- and metabolic-induced changes. Bioelectrochemistry 7 (2007) 214-20.CrossRefGoogle Scholar
  52. 52.
    A. Beneduci, G. Chidichimo, S. Tripi, E. Perrotta, Transmission elecrron microscopy study of the effects produced by wide-band low-power millimeter waves on MCF7 human breast cancer cells in culture. Anticancer Res. 25 (2005) 1009-1013.Google Scholar
  53. 53.
    I.A. Titushkin, V.S. Rao, W.F. Pickard, E.G. Moros, G. Shafirstein and M.R. Cho, Altered calcium dynamics mediates P19-derived neuron-like cell responses to millimeter-wave radiation. Rad. Res. 172 (2009) 725-736.CrossRefGoogle Scholar
  54. 54.
    A. Ramundo-Orlando, G. Longo, M. Cappelli, M. Girasole, L. Tarricone, A. Beneduci, R. Massa, The response of giant phospholipids vesicles to millimeter wave radiations. BBA Biomembranes 1788 (2009) 1497-1507.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  1. 1.Institute of Neurobiology and Molecular Medicine, Italian National Research CouncilRomeItaly

Personalised recommendations