Emission of Terahertz Radiation from Two-Dimensional Electron Systems in Semiconductor Nano- and Hetero-Structures

  • Taiichi Otsuji
  • Takayuki Watanabe
  • Amine El Moutaouakil
  • Hiromi Karasawa
  • Tsuneyoshi Komori
  • Akira Satou
  • Tetsuya Suemitsu
  • Maki Suemitsu
  • Eiichi Sano
  • Wojciech Knap
  • Victor Ryzhii
Article

Abstract

This paper reviews recent advances in emission of terahertz radiation from two-dimensional (2D) electron systems in semiconductor nano-heterostructures. 2D plasmon resonance is first presented to demonstrate intense broadband terahertz emission from InGaP/InGaAs/GaAs and InAlAs/InGaAs/InP material systems. The device structure is based on a high-electron mobility transistor and incorporates the author’s original interdigitated dual-grating gates. Second topic focuses on graphene, a monolayer carbon-atomic honeycomb lattice crystal, exhibiting unique carrier transport and optical properties owing to massless and gapless energy spectrum. Coherent stimulated terahertz emission from femtosecond infrared-laser pumped epitaxial graphene is experimentally observed, reflecting the occurrence of negative dynamic conductivity and population inversion.

Keywords

Terahertz emission Two-dimensional electrons Plasmons Graphene Heterostructures 

Notes

Acknowledgements

The author would like to thank Yuki Tsuda, Kouhei Horiike, Hiroyuki Handa, Yu Miyamoto, and Hirokazu Fukidome at RIEC, Tohoku University, Japan, Yahya M. Meziani at Salamanca University, Spain, Viacheslav Popov at KIREE, Russian Academy of Science, Saratov, Russia, Dominique Coquillat, Abdelouahad El Fatimy, and Frederic Teppe at CNRS-University of Montpellier, France, and Maxim Ryzhii and Akira Satou at University of Aizu, Japan, for their extensive contributions throughout this work. This work is financially supported in part by the JST-CREST, Japan, and the JSPS-BR(S), Japan.

References

  1. 1.
    M. Tonouchi, Nature Photon. 1, 97(2007).CrossRefGoogle Scholar
  2. 2.
    R. A. Hopfel, E. Vass, and E. Gornik, Phys. Rev. Lett. 49, 1667 (1982).CrossRefGoogle Scholar
  3. 3.
    D. C. Tsui, E. Gornik and R. A. Logan, Solid State Communications 35, 875 (1980).CrossRefGoogle Scholar
  4. 4.
    N. Okisu, Y. Sambe, and T. Kobayashi, Appl. Phys. Lett. 48 (1986) 776–778.CrossRefGoogle Scholar
  5. 5.
    R. Hopfel, G. Lindemann, E. Gornik, G. Stangl, A. C. Gossard and W. Wiegmann, Surf. Sci. 113, 118 (1982).CrossRefGoogle Scholar
  6. 6.
    R. J. Wilkinson, C. D. Ager, T. Duffield, H. P. Hughes, D. G. Hasko, H. Armed, J. E. F. Frost, D. C. Peacock, D. A. Ritchie, A. C. Jones, C. R. Whitehouse, and N. Apsley, J. Appl. Phys. 71, 6049 (1992).CrossRefGoogle Scholar
  7. 7.
    K. Hirakawa, K. Yamanaka, M. Grayson, and D. C. Tsui, Appl. Phys. Lett. 67, 2326 (1995).CrossRefGoogle Scholar
  8. 8.
    M. Dyakonov and M. Shur, Phys. Rev. Lett. 71, 2465 (1993).CrossRefGoogle Scholar
  9. 9.
    W. Knap, J. Lusakowski, T. Parenty, S. Bollaert, A. Cappy, V. V. Popov, and M. S. Shur, Appl. Phys. Lett. 84, 2331 (2004).CrossRefGoogle Scholar
  10. 10.
    J. Lusakowski, W. Knap, N. Dyakonova, and L. Varani, J. Appl. Phys. 97, 064307 (2005).CrossRefGoogle Scholar
  11. 11.
    N. Dyakonova, F. Teppe, J. Lusakowski, W. Knap, M. Levinshtein, A. P. Dmitriev, M. S. Shur, S. Bollaert, and A. Cappy, J. Appl. Phys. 97, 114313 (2005).CrossRefGoogle Scholar
  12. 12.
    S. A. Mikhailov, Phys. Rev. B. 58, 1517 (1998).CrossRefGoogle Scholar
  13. 13.
    P. Bakshi, K. Kempa, A. Scorupsky, C. G. Du, G. Feng, R. Zobl, G. Strasser, C. Rauch, Ch. Pacher, K. Unterrainer, and E. Gornik, Appl. Phys. Lett. 75, 1685 (1999).CrossRefGoogle Scholar
  14. 14.
    R. Colombelli, F. Capasso, C. Gmachl, A. L. Hutchinson, D. L. Sivco, A. Tredicucci, M. C. Wanke, A. M. Sergent, and A. Y. Cho, Appl. Phys. Lett. 78, 2620 (2001).CrossRefGoogle Scholar
  15. 15.
    A. Tredicucci, R. Kohler, L. Mahler, H. E. Beere, E. H. Linfield, and D. A. Ritchie, Semicond. Sci. Technol. 20, S222 (2005).CrossRefGoogle Scholar
  16. 16.
    A. El Fatimy, N. Dyakonova, Y. Meziani, T. Otsuji, W. Knap, S. Vandenbrouk, K. Madjour, D. Théron, C. Gaquiere, M. A. Poisson, S. Delage, P. Prystawko, and C. Skierbiszewski, J. Appl. Phys. 107, 024504 (2010).CrossRefGoogle Scholar
  17. 17.
    V. Ryzhii, A. Satou, and M. Shur, IEICE Trans. Electron. E89-C, 1012 (2006).CrossRefGoogle Scholar
  18. 18.
    V. Ryzhii, A. Satou, M. Ryzhii, T. Otsuji, and M. S. Shur, J. Phys.: Condens. Matter 20, 384207 (2008).CrossRefGoogle Scholar
  19. 19.
    V. Ryzhij, N. A. Bannov, and V. A. Fedirko, Sov. Phys. Semicond. 18, 481 (1984).Google Scholar
  20. 20.
    A. K. Geim and K. S. Novoselov, Nat. Mat. 6, 183 (2007).CrossRefGoogle Scholar
  21. 21.
    K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I. Katsnelson, I. V. Grigorieva, S. V. Dubonos, and A. Firsov, Nature 438, 197 (2005).CrossRefGoogle Scholar
  22. 22.
    Y. Zhang, Y.-W. Tan, H. L. Stormer, and P. Kim, Nature 438, 201 (2005).CrossRefGoogle Scholar
  23. 23.
    V. Ryzhii, M. Ryzhii, and T. Otsuji, J. Appl. Phys. 101, 083114 (2007).CrossRefGoogle Scholar
  24. 24.
    V. Ryzhii, M. Ryzhii, and T. Otsuji, Phys. Stat. Sol. (c) 5, 261 (2008).CrossRefGoogle Scholar
  25. 25.
    V. Ryzhii, M. Ryzhii, A. Satou, T. Otsuji, A. A. Dubinov and V. Y. Aleshkin, J. Appl. Phys. 106, 084507 (2009).CrossRefGoogle Scholar
  26. 26.
    A. A. Dubinov, V. Y. Aleshkin, M. Ryzhii, T. Otsuji, and V. Ryzhii, Appl. Phys. Express 2, 092301 (2009).CrossRefGoogle Scholar
  27. 27.
    T. Ando, J. Phys. Soc. Jpn. 75, 124701 (2006).CrossRefGoogle Scholar
  28. 28.
    H. Suzuura and T. Ando, J. Phys. Soc. Jpn. 77, 044703 (2008).CrossRefGoogle Scholar
  29. 29.
    F. Rana, P. A. George, J. H. Strait, J. Dawlaty, S. Shivaraman, M. Chandrashekhar, and M. G. Spencer, Phys. Rev. B 79, 115447 (2009).CrossRefGoogle Scholar
  30. 30.
    J. M. Dawlaty, S. Shivaraman, M. Chandrashekhar, F. Rana, and M. G. Spencer, Appl. Phys. Lett. 92, 042116 (2008).CrossRefGoogle Scholar
  31. 31.
    D. Sun, Z.-K. Wu, C. Divin, X. Li, C. Berger, W. A. de Heer, P. N. First, and T. B. Norris, Phys. Rev. Lett. 101, 157402 (2008).CrossRefGoogle Scholar
  32. 32.
    P. A. George, J. Strait, J. Dawlaty, S. Shivaraman, M. Chandrashekhar, F. Rana, and M. G. Spencer, Nano Lett. 8, 4248 (2008).CrossRefGoogle Scholar
  33. 33.
    H. Choi, F. Borondics, D. A. Siegel, S. Y. Zhou, M. C. Martin, A. Lanzara, and R. A. Kaindl, Appl. Phys. Lett. 94, 172102 (2009).CrossRefGoogle Scholar
  34. 34.
    H. Wang, J. H. Strait, P. A. George, S. Shivaraman, V. B. Shields, M. Chandrashekhar, J. Hwang, F. Rana, M. G. Spencer, C. S. Ruiz-Vargas, and J. Park, arXiv:0909.4912 (2009).Google Scholar
  35. 35.
    T. Kampfrath, L. Perfetti, F. Schapper, C. Frischkorn, and M. Wolf, Phys. Rev. Lett. 95, 187403 (2005).CrossRefGoogle Scholar
  36. 36.
    M. Breusing, C. Ropers, and T. Elsaesser, Phys. Rev. Lett. 102, 086809 (2009).CrossRefGoogle Scholar
  37. 37.
    T. Otsuji, M. Hanabe, T. Nishimura, and E. Sano, Opt. Express 14, 4815 (2006).CrossRefGoogle Scholar
  38. 38.
    T. Otsuji, Y. M. Meziani, M. Hanabe, T. Ishibashi, T. Uno, E. Sano, Appl. Phys. Lett. 89, 263502 (2006).CrossRefGoogle Scholar
  39. 39.
    T. Otsuji, Y. M. Meziani, M. Hanabe, T. Nishimura, and E. Sano, Solid State Electron. 51, 1319 (2007).CrossRefGoogle Scholar
  40. 40.
    Y. M. Meziani, H. Handa, W. Knap, T. Otsuji, E. Sano, V. V. Popov, G. M. Tsymbalov, D. Coquillat, and F. Teppe, Appl. Phys. Lett. 92, 201108 (2008).CrossRefGoogle Scholar
  41. 41.
    T. Otsuji, Y. M. Meziani, T. Nishimura, T. Suemitsu, W. Knap, E. Sano, T. Asano, and V. V. Popov, J. Phys.: Condens. Matter 20, 384206 (2008).Google Scholar
  42. 42.
    Y. Tsuda, T. Komori, T. Watanabe, T. Suemitsu, and T. Otsuji, J. Opt. Soc. Am. B 26, A52 (2009).CrossRefGoogle Scholar
  43. 43.
    T. Suemitsu, H. Yokoyama, Y. Umeda, T. Enoki, and Y. Ishii, IEEE Trans. Electron Devices 46, 1074 (1999).CrossRefGoogle Scholar
  44. 44.
    A. El Moutaouakil, T. Komori, K. Horiike, T. Suemitsu, and T. Otsuji, EICE Trans. Electron. in press. Google Scholar
  45. 45.
    V. V. Popov, G. M. Tsymbalov, and N. J. M. Horing, J. Appl. Phys. 99, 124303 (2006).CrossRefGoogle Scholar
  46. 46.
    V. Ryzhii, A. Satou, M. Ryzhii, T. Otsuji, and M. S. Shur, J. Phys.: Condens. Matter 20, 384207 (2008).CrossRefGoogle Scholar
  47. 47.
    T. Nishimura, N. Magome, H. C. Kang and T, Otsuji, IEICE Trans. Electron. E92-C, 696 (2009).CrossRefGoogle Scholar
  48. 48.
    A. El Moutaouakil, T. Watanabe, C. Haibo, T. Komori, T. Suemitsu, and T. Otsuji, J. Phys.: Conf. Ser. 193, 012068 (2009).CrossRefGoogle Scholar
  49. 49.
    T. Otsuji, M. Hanabe, and O. Ogawara, Appl. Phys. Lett. 85, 2119 (2004).CrossRefGoogle Scholar
  50. 50.
    H. Karasawa, T. Komori, T. Watanabe, M. Suemitsu, V. Ryzhii, and T. Otsuji, Dig. CLEO-Europe, CF8.3, Munich, 2009.Google Scholar
  51. 51.
    T. Otsuji, H. Karasawa, T. Komori, T. Watanabe, H. Fukidome, M. Suemitsu, A. Satou, and V. Ryzhii, arXiv:1001.5075 (2009).Google Scholar
  52. 52.
    M. Suemitsu, Y. Miyamoto, H. Handa, and A. Konno, e-J. Surface Sci. Nanotech. 7, 311 (2009).CrossRefGoogle Scholar
  53. 53.
    Y. Miyamoto, H. Handa, E. Saito, A. Konno, Y. Narita, M. Suemitsu, H. Fukidome, T. Ito, K. Yasui, H. Nakazawa, and T. Endoh, e-J. Surface Sci. Nanotech. 7, 107 (2009).Google Scholar
  54. 54.
    H. Fukidome, Y. Miyamoto, H. Handa, E. Saito, and M. Suemitsu, Jpn. J. Appl. Phys. in press.Google Scholar
  55. 55.
    L. G. Cançadoa, K. Takaia, T. Enokia, M. Endob, Y. A. Kimb, H. Mizusakib, N. L. Spezialic, A. Jorioc, and M. A. Pimentac, Carbon 46, 272 (2008).CrossRefGoogle Scholar
  56. 56.
    C. Faugeras, A. Nerrière, M. Potemski, A. Mahmood, E. Dujardin, C. Berger, and W. A. de Heer, Appl. Phys. Lett. 92, 011914 (2008).CrossRefGoogle Scholar
  57. 57.
    J. Hass, F. Varchon, J. E. Millán-Otoya, M. Sprinkle, N. Sharma, W. A. de Heer, C. Berger, P. N. First, L. Magaud, and E. H. Conrad, Phys. Rev. Lett. 100, 125504 (2008).CrossRefGoogle Scholar
  58. 58.
    L. Min, R. J. D. Miller, Appl. Phys. Lett. 56, 524 (1990).CrossRefGoogle Scholar
  59. 59.
    H. Karasawa, T. Watanabe, T. Komori, M. Suemitsu, V. Ryzhii, and T. Otsuji, J. Infrared Milli. Terahz Waves, online (2010). doi:10.1007/s10762-010-9677-1
  60. 60.
    S. A. Boubanga Tombet, S. Chan, A. Satou, T. Watanabe, V. Ryzhii, and T. Otsuji, unpublished (under preparation for submission).Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Taiichi Otsuji
    • 1
  • Takayuki Watanabe
    • 1
  • Amine El Moutaouakil
    • 1
  • Hiromi Karasawa
    • 1
  • Tsuneyoshi Komori
    • 1
  • Akira Satou
    • 1
  • Tetsuya Suemitsu
    • 1
  • Maki Suemitsu
    • 1
  • Eiichi Sano
    • 2
  • Wojciech Knap
    • 3
  • Victor Ryzhii
    • 4
  1. 1.Research Inst. of Electrical CommunicationTohoku UniversitySendaiJapan
  2. 2.Research Center for Integrated Quantum ElectronicsHokkaido UniversitySapporoJapan
  3. 3.University of Montpellier & Centre National de la Recherche ScientifiqueMontpellierFrance
  4. 4.Computational Nano-Electronics LaboratoryUniversity of AizuAizu-WakamatsuJapan

Personalised recommendations