Journal of Infrared, Millimeter, and Terahertz Waves

, Volume 31, Issue 9, pp 1015–1021 | Cite as

Temperature-Dependent Terahertz Spectroscopy of Liquid n-alkanes

Article

Abstract

We describe measurements of the terahertz dielectric properties of normal alkanes. We study all of the liquid alkanes from pentane (C5) to hexadecane (C16) over the temperature range from 20–80°C, and obtain the absorption coefficients and refractive indices in the spectral range from 0.1 to 2.5 THz (3–83 cm−1). The mean molecular polarizability is found to vary linearly with chain length at all temperatures, indicating that an additive model for polarizability, with distinct contributions from the methylene groups and the methyl end groups, provides an accurate description. The absorption coefficients of these non-polar liquids, arising from transient induced dipoles, are essentially featureless in this spectral range, with an almost linear dependence on frequency and negligible temperature dependence. These results provide a baseline for far infrared spectroscopic studies of inter-molecular interactions in non-polar hydrocarbons.

Keywords

Alkane Terahertz 

Notes

Acknowledgments

This work has been supported in part by the R. A. Welch Foundation, by the University of Alberta through the Alberta Innovates Technology Futures program, and by Shell International Exploration and Production, Inc.

References

  1. 1.
    S. P. Srivastava, J. Handoo, K. M. Agrawal, and G. C. Joshi, J. Phys. Chem. Solids 54, 639 (1993).CrossRefGoogle Scholar
  2. 2.
    E. B. Sirota and A. B. Herhold, Science 283, 529 (1999).CrossRefGoogle Scholar
  3. 3.
    J. P. Laib, D. V. Nickel, and D. M. Mittleman, Chem. Phys. Lett. 493, 279 (2010).CrossRefGoogle Scholar
  4. 4.
    X. Z. Wu, B. M. Ocko, E. B. Sirota, S. K. Sinha, M. Deutsch, B. H. Cao, and M. W. Kim, Science 261, 1018 (1993).CrossRefGoogle Scholar
  5. 5.
    E. B. Sirota, Langmuir 14, 3133 (1998).CrossRefGoogle Scholar
  6. 6.
    R. G. Snyder, H. L. Strauss, R. Alamo, and L. Mandelkern, J. Chem. Phys. 100, 5422 (1993).CrossRefGoogle Scholar
  7. 7.
    P. T. T. Wong, Ann. Rev. Biophys. Bioeng. 13, 1 (1984).CrossRefGoogle Scholar
  8. 8.
    W. Dollhopf, H. P. Grossmann, and U. Leute, Colloid & Polymer Sci. 259, 267 (1981).CrossRefGoogle Scholar
  9. 9.
    A.-J. Briard, M. Bouroukba, D. Petitjean, and M. Dirand, J. Chem. Eng. Data 48, 1508 (2003).CrossRefGoogle Scholar
  10. 10.
    E. B. Sirota, J. H. E. King, D. M. Singer, and H. H. Shao, J. Chem. Phys. 98, 5809 (1993).CrossRefGoogle Scholar
  11. 11.
    L. Brambilla and G. Zerbi, Macromol. 38, 3327 (2005).CrossRefGoogle Scholar
  12. 12.
    M. Yamaguchi, S. V. Serafin, T. H. Morton, and E. L. Chronister, J. Phys. Chem. B 107, 2815 (2003).CrossRefGoogle Scholar
  13. 13.
    S. K. Garg, J. E. Bertie, H. Kilp, and C. P. Smyth, J. Chem. Phys. 49, 2551 (1968).CrossRefGoogle Scholar
  14. 14.
    U. Stumper, Adv. Molec. Relaxation Processes 7, 189 (1975).CrossRefGoogle Scholar
  15. 15.
    A. S. Gilbert, A. M. North, T. G. Parker, and R. A. Pethrick, Spectrochim. Acta A 32, 931 (1976).CrossRefGoogle Scholar
  16. 16.
    W. G. Scaife, J. K. Vij, G. Evans, and M. Evans, J. Phys. D 15, 1279 (1982).CrossRefGoogle Scholar
  17. 17.
    J. K. Vij, Il Nuovo Cimento 2, 751 (1983).CrossRefGoogle Scholar
  18. 18.
    W. Richter and D. Schiel, Infrared Phys. 24, 227 (1984).CrossRefGoogle Scholar
  19. 19.
    D. Mittleman, Sensing with Terahertz Radiation (Springer-Verlag, Heidelberg, 2002).Google Scholar
  20. 20.
    J. E. Pedersen and S. R. Keiding, IEEE J. Quant. Elec. 28, 2518 (1992).CrossRefGoogle Scholar
  21. 21.
    T. Ikeda, A. Matsushita, M. Tatsuno, Y. Minami, M. Yamaguchi, K. Yamamoto, M. Tani, and M. Hangyo, Appl. Phys. Lett. 87, 034105 (2005).CrossRefGoogle Scholar
  22. 22.
    M. Naftaly, A. P. Foulds, R. E. Miles, and A. G. Davies, Int. J. Infrared & Millimeter Waves 26, 55 (2005).CrossRefGoogle Scholar
  23. 23.
    F. M. Al-Douseri, Y. Chen, and X.-C. Zhang, Int. J. Infrared & Millimeter Waves 27, 481 (2006).CrossRefGoogle Scholar
  24. 24.
    J. Boyd, A. Briskman, V. Colvin, and D. Mittleman, Phys. Rev. Lett. 87, 147401 (2001).CrossRefGoogle Scholar
  25. 25.
    J. E. Boyd, A. Briskman, C. Sayes, D. Mittleman, and V. Colvin, J. Phys. Chem. 106, 6346 (2002).Google Scholar
  26. 26.
    S. Gorenflo, U. Tauer, I. Hinkov, A. Lambrecht, R. Buchner, and H. Helm, Chem. Phys. Lett. 421, 494 (2006).CrossRefGoogle Scholar
  27. 27.
    W. G. Scaife and C. G. Lyons, Ber. Bunsenges. Phys. Chem. 94, 758 (1990).Google Scholar
  28. 28.
    K. D. Bonin and M. A. Kadar-Kallen, Int. J. Mod. Phys. B 8, 3313 (1994).CrossRefGoogle Scholar
  29. 29.
    C. L. Yaws, Thermophysical properties of chemicals and hydrocarbons (William Andrew, Norwich NY, 2008).Google Scholar
  30. 30.
    F. Jiménez-Cruz and G. C. Laredo, Fuel 83, 2183 (2004).CrossRefGoogle Scholar
  31. 31.
    N. A. Hermiz, J. B. Hasted, and C. Rosenberg, J. Chem. Soc. Faraday Trans. 2, 147 (1982).Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  1. 1.Department of Electrical & Computer EngineeringRice UniversityHoustonUSA

Personalised recommendations