Observation of Amplified Stimulated Terahertz Emission from Optically Pumped Heteroepitaxial Graphene-on-Silicon Materials

  • Hiromi Karasawa
  • Tsuneyoshi Komori
  • Takayuki Watanabe
  • Akira Satou
  • Hirokazu Fukidome
  • Maki Suemitsu
  • Victor Ryzhii
  • Taiichi Otsuji
Article

Abstract

We experimentally observed the fast relaxation and relatively slow recombination dynamics of photogenerated electrons/holes in a heteroepitaxial graphene-on-Si material under pumping with a 1550-nm, 80-fs pulsed fiber laser and probing with the corresponding terahertz beam generated by and synchronized with the pumping laser. The time-resolved electric-nearfield intensity originating from the coherent terahertz photon emission is electrooptically sampled in total-reflection geometry. The Fourier spectrum fairly agrees the product of the negative dynamic conductivity and the expected THz photon spectrum reflecting the pumping photon spectrum. This phenomenon is interpreted as an amplified stimulated terahertz emission.

Keywords

Graphene Terahertz Negative-dynamic conductivity Population inversion Stimulated emission GOS Coherent 

Notes

Acknowledgments

The authors thank Yu Miyamoto and Hiroyuki Handa at RIEC, Tohoku University, Japan for their providing graphene-on-silicon samples, and also Maxim Ryzhii at University of Aizu for his valuable discussion. This work was financially supported in part by the JST-CREST program, Japan, and a Grant-in-Aid for Basic Research (S) from the Japan Society for the Promotion of Science.

References

  1. 1.
    A.K. Geim. K.S. Novoselov, Nat. Mat. 6, 183 (2007).Google Scholar
  2. 2.
    K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, M.I. Katsnelson, I.V. Grigorieva, S.V. Dubonos, A. Firsov, Nature 438, 197 (2005).CrossRefGoogle Scholar
  3. 3.
    P. Kim, Y. Zhang, Y.-W. Tan, H.L. Stormer, Nature 438, 201 (2005).CrossRefGoogle Scholar
  4. 4.
    K.S Novoselov, A.K. Geim, S.V Morozov, D Jiang,Y. Zhang, S.V. Dubonos, I.V.Grigorieva, and A.A.Frisov, Science 306,666 (2004).CrossRefGoogle Scholar
  5. 5.
    V. Ryzhii, M .Ryzhii, T. Otsuji, J. Appl. Phys. 101, 083114 (2007).CrossRefGoogle Scholar
  6. 6.
    L.A. Falkovsky and A.A. Varlamov, Eur. Phys. J. B56, 281 (2007).Google Scholar
  7. 7.
    A. A. Dubinov, V. Y. Aleshkin, M. Ryzhii, T. Otsuji, and V. Ryzhii, Appl. Phys. Express 2, 092301 (2009)CrossRefGoogle Scholar
  8. 8.
    V. Ryzhii, M. Ryzhii, A. Satou, T. Otsuji, A. A. Dubinov and V. Y. Aleshkin, J. Appl. Phys. 106, 084507 (2009).CrossRefGoogle Scholar
  9. 9.
    T. Kampfrath, L. Perfetti, F. Schapper, C. Frischkorn, and M. Wolf, Phys. Rev. Lett. 95, 187403 (2005).CrossRefGoogle Scholar
  10. 10.
    H. Wang, J.H. Strait, P.A. George, S. Shivaraman, V.B. Shields, M. Chandrashekhar, J. Hwang, F. Rana, M.G. Spencer, C.S. Ruiz-Vargas, and J. Park, Arxiv 0909.4912 (2009).Google Scholar
  11. 11.
    P.A. George, J. Strait, J. Dawlaty, S. Shivaraman, M. Chandrashekhar, F. Rana, M.G. Spencer, Nano Lett. 8, 4248 (2008).CrossRefGoogle Scholar
  12. 12.
    M. Breusing, C. Ropers, and T. Elsaesser, Phys. Rev. Lett. 102, 086809 (2009).CrossRefGoogle Scholar
  13. 13.
    By substituding Eqs. (9) and (12) and \( \alpha = {e^2}/\hbar \) (appearing just after Eq. (9)) into Eq. (13), all in [5], one can obtain the right-hand side of Eq. (3) in this paper. Equation (14) in [5] corresponds to Eq. (4) in this paper.Google Scholar
  14. 14.
    F. Rana, P.A. George, J.H. Strait, J. Dawlaty, S. Shivaraman, M. Chandrashekhar, and M.G. Spencer, Phys. Rev. B 79, 115447 (2009).CrossRefGoogle Scholar
  15. 15.
    N. Bonini, M. Lazzeri, N. Marzari, F. Mauri, Phys. Rev. Lett. 99, 176802 (2007).CrossRefGoogle Scholar
  16. 16.
    F. Rana, Phys. Rev. B 76, 155431 (2007).CrossRefGoogle Scholar
  17. 17.
    M .Suemitsu, Y. Miyamoto, H. Handa, A. Konno, -J. Surface Sci. Nanotech. 7, 311 (2009).CrossRefGoogle Scholar
  18. 18.
    Y. Miyamoto, H. Handa, E. Saito, A. Konno, Y. Narita, M. Suemitsu, H. Fukidome, T. Ito, K. Yasui, H. Nakazawa. T. Endoh, e-J. Surface Sci. Nanotech. 7, 107 (2009).Google Scholar
  19. 19.
    H. Fukidome, Y. Miyamoto, H. Handa, E. Saito, M. Suemitsu, Jpn. J. Appl. Phys. 49, 01A1103 (2010).Google Scholar
  20. 20.
    L.G. Cançadoa, K. Takaia, T. Enokia, M. Endob, Y.A. Kimb, H. Mizusakib, N.L. Spezialic, A. Jorioc and M.A. Pimentac, Carbon 46, 272 (2008).CrossRefGoogle Scholar
  21. 21.
    C. Faugeras, A. Nerrière, M. Potemski, A. Mahmood, E. Dujardin, C. Berger, and W.A. de Heer, Appl. Phys. Lett. 92, 011914 (2008)CrossRefGoogle Scholar
  22. 22.
    J. Hass, F. Varchon, J.E. Millán-Otoya, M. Sprinkle, N. Sharma, W.A. de Heer, C. Berger, P.N. First, L. Magaud, E.H. Conrad, Phys. Rev. Lett. 100, 125504 (2008).CrossRefGoogle Scholar
  23. 23.
    L. Min, R.J.D. Miller, Appl. Phys. Lett. 56, 524 (1999).CrossRefGoogle Scholar
  24. 24.
    V. Ryzhii, A. A. Dubinov, T. Otsuji, V. Mitin, and M. S. Shur, J. Appl. Phys. 107, 054505 (2010).Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Hiromi Karasawa
    • 1
  • Tsuneyoshi Komori
    • 1
  • Takayuki Watanabe
    • 1
  • Akira Satou
    • 1
    • 3
  • Hirokazu Fukidome
    • 1
    • 3
  • Maki Suemitsu
    • 1
    • 3
  • Victor Ryzhii
    • 2
    • 3
  • Taiichi Otsuji
    • 1
    • 3
  1. 1.Research Institute of Electrical CommunicationTohoku UniversitySendaiJapan
  2. 2.Depertment of Computer Science and EngineeringUniversity of AizuAizu-WakamatsuJapan
  3. 3.JST-CRESTTokyoJapan

Personalised recommendations