Printed Planar Antenna for Wideband Applications

  • Rezaul Azim
  • Mohammad Tariqul Islam
  • Norbahiah Misran


A compact planar antenna operating at a frequency range of 3–16 GHz is presented for wideband applications. The antenna is composed of a square patch fed by a microstrip line and a partial ground plane with a rectangular slot. The proposed antenna is very easy to be integrated with microwave circuitry for low manufacturing cost. The flat antenna has a compact structure and the total size is 29 mm × 22 mm. The result shows that the measured impedance bandwidth (VSWR≤ 2) of the proposed antenna is 3.2–15.44 GHz, with a notch from 4.7 to 5.8 GHz. The effects of the structure parameters on impedance bandwidth are also investigated. Details of the proposed compact planar antenna design are presented and discussed.


Microstrip line Partial ground plane Planar antenna Ultrawideband (UWB) antenna 



This work was supported by the MOSTI Secretariat, Ministry of Science, Technology and Innovation of Malaysia, Science Grant no. 01-01-02-SF0608 and the Institute of Space Science (ANGKASA), Universiti Kebangsaan Malaysia.


  1. 1.
    “Federal Communications Commission Revision of Part 15 of the Commission’s Rules Regarding Ultra-Wideband Transmission System from 3.1 to 10.6 GHz,” in Federal Communications Commission (FCC), Washington, DC: ET-Docket, Pages: 98–153, 2002.Google Scholar
  2. 2.
    B. Allen, M. Dohler, W. Q. Malik, A. K. Brown, and D. J. Edwards, Eds., “Ultra-Wideband Antennas and Propagation for Communications, Radar and Imaging,” (Chichester, U.K.: Wiley, 2007).Google Scholar
  3. 3.
    E. C. Fear and M. A. Stuchly, “Microwave detection of breast cancer,” IEEE Trans. Microwave Theory Technol. 48(11), 1854–1863 (2000).CrossRefGoogle Scholar
  4. 4.
    H.M. Jafari, M.J. Deen, S. Hranilovic, and N.K. Nikolova, “A study of ultrawideband antennas for near-field imaging,” IEEE Trans. Antennas Propag. 55(4), 1184–1188 (2007).CrossRefGoogle Scholar
  5. 5.
    M. Klemm, I. J. Craddock, A. Preece, J. Leendertz, and R. Benjamin, “Evaluation of a hemi-spherical wideband antenna array for breast cancer imaging,” Radio Sci. 43(6), (2008).Google Scholar
  6. 6.
    D. C. Chang, J. C. Liu, and M. Y. Liu, “A novel tulip-shaped monopole antenna for UWB applications,” Microwave Opt. Technol. Lett. 48, 307–312(2006).CrossRefGoogle Scholar
  7. 7.
    X. H. Wu and Z. N. Chen, “Comparison of planar dipoles in UWB applications,” IEEE Trans. Antennas Propag. 53, 1973–1983(2005).CrossRefGoogle Scholar
  8. 8.
    X. H.Wu and A. A. Kishk, “Study of an ultrawideband omnidirectional rolled monopole antenna with trapezoidal cuts,” IEEE Trans. Antennas Propag. 56, 259–263(2008).CrossRefGoogle Scholar
  9. 9.
    X. H. Wu, Z. N. Chen, and N. Yang, “Optimization of planar diamond antenna for single-based and multiband UWB wireless communications,” Microwave Opt. Technol. Lett. 42, 451–455, (2004).CrossRefGoogle Scholar
  10. 10.
    J. Y. Sze and K. L. Wong, “Bandwidth enhancement of a microstrip line-fed printed wide-slot antenna,” IEEE Trans. Antennas Propag. 49, 1020–1024 (2001).CrossRefGoogle Scholar
  11. 11.
    R. Chair, A. A. Kishk, and K. F. Lee, “Ultrawide-band coplanar waveguide-fed rectangular slot antenna,” Antennas Wireless Propag. Lett. 3(1), 227–229 (2004).CrossRefGoogle Scholar
  12. 12.
    S. H. Hsu and K. Chang, “Ultra-thin CPW-fed rectangular slot antenna for UWB applications,” IEEE Antennas and Propagation Society International Symposium 2006, 2587–2590 (2006).Google Scholar
  13. 13.
    H. D. Chen, “Broadband CPW-fed square slot antenna with a widened tuning stub,” IEEE Trans. Antennas Propag. 51, 1982–1986 (2003).CrossRefGoogle Scholar
  14. 14.
    Y. W. Jang, “A circular microstrip-fed single-layer single-slot antenna for multi-band mobile communications,” Microwave Opt. Technol. Lett. 37, 59–62 (2003).CrossRefGoogle Scholar
  15. 15.
    T.Yang and W. A. Davis, “Planar half-disk antenna structures for ultrawideband communications,” Antennas and Propagation Society International Symposium 2004. IEEE Volume 3, 2508–2511 (2004).Google Scholar
  16. 16.
    L. Jianxin, C. C. Chiau, X. Chen, and C. G. Parini, “Study of a printed circular disc monopole antenna for UWB systems,” IEEE Trans. Antennas Propag. 53(11), 3500–3504 (2005).CrossRefGoogle Scholar
  17. 17.
    M. J. Ammann and Z.-N. Chen, “Wideband monopole antennas for multi-band wireless systems,” IEEE Antennas Propag. Mag. 45(2), 146–150 (2003).CrossRefGoogle Scholar
  18. 18.
    Z. N. Chen, “Broadband rolled monopole,” IEEE Trans. Antennas Propag. 51(11), 3175–3177 (2003).CrossRefGoogle Scholar
  19. 19.
    Z. N. Chen, M. Y. Chia, and M. J. Ammann, “Optimization and comparison of broadband monopoles,” Proc. IEE Microwave Antennas Propag. 150(6), 429–435 (2003).CrossRefGoogle Scholar
  20. 20.
    X. Qing, Z. N. Chen, and M. Y. W. Chia, “UWB characteristics of disc cone antenna,” IEEE International Workshop on Antenna Technology 2005, 97–100 (2005).Google Scholar
  21. 21.
    Y. F. Liu, K. L. Lau, and C. H. Chan, “Experimental studies of printed wide-slot antenna for wide-band applications,” IEEE Antennas Wireless Propag. Lett. 3, 273–275 (2004).CrossRefGoogle Scholar
  22. 22.
    IE3D version 12.3, Zeland Software, Inc., Fremont, CA, USA (2006).Google Scholar
  23. 23.
    W. C. Liu, W. R. Chen, and C. M. Wu, “Printed double S-shaped monopole antenna for wideband and multiband operation of wireless communications,” Proc. IEE Microwave Antennas Propag. 151(6), 473–476 (2004).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Rezaul Azim
    • 1
    • 2
  • Mohammad Tariqul Islam
    • 2
  • Norbahiah Misran
    • 1
    • 2
  1. 1.Department of Electrical, Electronic and Systems EngineeringUniversiti Kebangsaan MalaysiaSelangorMalaysia
  2. 2.Institute of Space Science (ANGKASA)Universiti Kebangsaan MalaysiaSelangorMalaysia

Personalised recommendations